"Explosion technology"— scientific and technical journal

Journal was founded in 1922 by a group of engineers. In Russia and the CIS "Explosion technology" is the only one peer-reviewed specialized periodical in the field of blasting.

sue 141/98 (2023) Theory and practice of blasting work99.pdf10.18698/0372-7009-2023-9

Brief view
 Article title Pages  
Title and imprint 

Section 1. Studies of rock destruction by explosion
UDC 625.235
Andreiko S.S., Doctor of Engineering, Professor,
Maltsev V.M., Researcher, PhD in Engineering,
Anikin V.V., Researcher, PhD in Engineering
(Mining Institute, Ural Branch of RAS)

Mathematical modelling of explosion pulse generation in blastholes with account of rock mass crushing intensity

Keywords:explosion pulse, pressure, attenuation, strength, detonation velocity, mathematical modelling, standardized crushing pulse, theoretical design indicator of dynamic rock strength

This article suggests using the pressure pulse of explosive gases as the main factor of rock destruction by blasthole charge explosion. The article considers the effect that the pressure pulse of explosive gases generated by a blasthole charge has on rock masses for blastholes of 84−336 mm diameter and demonstrates the possibility to determine the main design parameters of a blast (the values of the line of least resistance, effective charge length, average diameter of blasted rock pieces, explosion pulse value) with account of the specified degree of blasted rock fragmentation and the input criterion, i.e. the theoretical design indicator of dynamic rock strength based on basic physical and mechanical rock characteristics and an explosive, which is physically suitable to the standardized value crushing pulse tested in practice in the course of blasting operations performed at the mines of the Verkhnekamskoe and Starobinskoe potash deposits. It also presents a table detailing the main design blast parameters and diagrams demonstrating the correlations of an explosion pulse versus the effective charge length, the effective charge length versus the blasthole diameter and the value of the line of least resistance versus the blasthole diameter, such diagrams being plotted based on the design data listed in the table. The paper also provides recommendations for the practical use of the derived dependencies.

Bibliographic list:
  1. Guidelines for blasting operations at the potash mines of the Verkhnekamskoe Deposit. Perm, 1984, 195 p.
  2. A blasting operator's reference book. Edited by B.N. Kutuzov - Moscow, Nedra, 1988 - 510 p.: ill.
  3. Vokhmin S.A., Kurchin G.S., Shevnina E.V., Kirsanov A.K., Kostylev S.S. Forecasting the grain size distribution of broken rock mass in open pit mining// Journal of Higher Educational Institutions. Mining Journal - 2020. - No. 1 - pp. 14-24.
  4. Explosion physics. Collective monograph: F.A. Baum et al.]; edited by K.P. Stanyukovich – Moscow, Science, 1975 – 704 p.: ill.
  5. Khanukaev A.N. The energy of stress waves generated by blast-caused rock destruction. – Moscow, Gosgortekhizdat, 1962. – 200 p.: ill.
  6. Baum F.A., Grigoryan S.S., Sanasaryan N.S. Determination of the explosion pulse along the forming blasthole and optimal parameters of blasthole charge // Explosion Technology – 1964 – No. 54/11 – pp. 53-102.
  7. Dugartsyrenov A.V., Rakhmanov R.A., Zarovnyaev B.N., Shubin G.V. Control of the pressure pulse of detonation products generated by blasthole charges explosion in open pits // Explosion Technology. – 2018. – No. 119-76 – pp. 62-77.
  8. Gorinov S.A., Maslov I.Yu. Estimation of the effective pulse during the explosion of a cylindrical charge // Issues of Subsurface Use – 2022 – No. 3 (34) – pp. 5-13. DOI: 10.25635/2313-1586.2022.03.005.
  9. Lykhin P.A., Maltsev V.M. Standardized crushing pulse as an indicator of rock crushability // Physical Issues of Rock Mass Destruction: Proceedings of the International Conference – Moscow, RAS, 1999 – pp.174-176.
  10. Shcherba V.Ya., Bashura A.N., Andreiko S.S. Control of gas-dynamic processes at the Starobinskoe potash salt deposit / Edited by V.Ya. Prushak – Moscow, Publishing House of Moscow State University, 2004 – 194 p.: ill.
  11. Silva J., Worsey T., Lusk B. Practical assessment of rock damage due to blasting // International Journal of Mining Science and Technology. – 2019. – V. 29, № 3. – pp. 379-385. – DOI: 10.1016/j.ijmst.2018.11.003
  12. Vennes I., Mitri H., Chinnasane D.R., Yao M. Large-scale destress blasting for seismicity control in hard rock mines: A case study // International Journal of Mining Science and Technology. – 2020. – V. 30, № 2. – C. 141-149. – DOI: 10.1016/j.ijmst.2020.01.005.
  13. Li-Yun Yang, Chen-Xi Ding. Fracture mechanism due to blast-imposed loading under high static stress conditions // International Journal of Rock Mechanics and Mining Sciences. – 2018. – V. 107, July. – P. 150-158. – DOI: 10.1016/j.ijrmms. 2018.04.039.
  14. V.M. Maltsev, V.V. Anikin Determination of the line of least resistance of explosive blasthole charge with account of its radial clearance // Mountain Echo. – 2020. – No. 1 (78) – pp. 42-46. DOI: 10.7242/echo.2020.1.9.
  15. Andreiko S.S., Maltsev V.M., Anikin V.V., Nesterov E.A. Calculation of crack formation radius by modeling the explosive charge with a radial clearance // XXIIND Winter School on Continuous Media Mechanics. – 2021. – V. 32. – С. 3-9. – (Book series Procedia Structural Integrity). – DOI: 10.1016/j.prostr.2021.09.002
5-19
UDC 622.235:539.3
Efremovtsev N.N., Ph.D., Senior researcher
(Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences (ICEMR RAS)

Methodological issues of complex landfill and industrial tests of crushing and technogenic effects and kinetics of the development of the detonation front of pvv charges of various designs

Keywords:drilling and blasting operations, energy emission modes, formation and propagation of dust and gas cloud, fine fractions output, open mining operations, equipment performance, man-made impact of explosive destruction, rocks, charge design and bottomhole

The paper presents the results of research on the creation of a methodology for landfill and industrial testing of crushing and man-made effects and the kinetics of the detonation front of PVV charges of various designs. The goals and objectives of the tests at various stages are formed. The developed schemes of charge structures in steel or plastic pipes with variable cross-section of elements are presented. ensuring the reduction of the man-made impact of the explosion on the environment. Described are designs of measuring detonation systems of well charges, which contain containers with water for formation during detonation of PVV over explosive steam unit, which provides coagulation of submicron dust particles, reduction of halo of propagation of poisonous detonation products and environmental consequences of change of energy release mode. The developed layout of equipment for sampling dust and detonation gas products during testing at the landfill and during industrial explosions on the open surface was carried out.
The research was carried out within the framework of event No. 1 of the comprehensive scientific and technical program of the full innovation cycle, approved by order of the Government of the Russian Federation of May 11, 2022 No. 1144-r and an agreement on the provision of grants from the federal budget in the form of subsidies in accordance with paragraph 4 of Article 78.1 of the Budget Code of the Russian Federation No. 075-15-2022-1185 of September 28, 2022.

Bibliographic list:
  1. Zakharov V.N., Efremovtsev N.N., Fedotenko V.S. Research into man-made impact of rock blasting in surface mining of mineral deposits // Gornaja Promyshlennost (Mining Industry). 2022. № 6. P. 61–68.
  2. Trubetskoy K.N., Kaplunov D.R., Ryl'Nikova M.V. Problems and prospects in the resource-saving and resource-reproducing geotechnology development for comprehensive mineral wealth development // Journal of Mining Science. 2012. V. 48. № 4. P. 688–693.
  3. Efremovtsev N., Kvitko S. Methodological Aspects of Properties and Blast Energy Kinetics Control of industrial of Explosives. Proseedings of the 8th International Conference on Physical problems of Rock Destruction. 2014. Published by Metallurgical Industry Press, China.
  4. Efremovtsev N.N. Novye tekhnologii porizacii ammiachnoj selitry i sostavy promyshlennyh vzryvchatyh veshchestv // Gornaja Promyshlennost (Mining Industry). 2015. № 2. S. 118.
  5. Efremovtsev N.N. New industrial explosives and fabrication technologies based on pore-and-channel forming emulsions for mining industry // Mining informational and analytical bulletin (Scientific and technical journal). 2018. № S1. S. 178–191. .
  6. Viktorov S.D., Efremovtsev N.N., Zakalinsky V.M., Lapikov I.N. Metodologiya razrabotki i primeneniya innovacionnyh energoemkih materialov dlya effektivnogo i ekologicheski bezopasnogo razrusheniya gornyh porod. Materialy 6-j mezhdunarodnoj nauchno-tekhnicheskoj konferencii «Reshenie ekologicheskih i tekhnologicheskih problem gornogo proizvodstva na territorii Rossii, blizhnego i dal'nego zarubezh'ya. 2019. AO «VNIIPIpromtekhnologii». S. 259–263.
20-38
UDC 622:235
Togunov M.B., D&B specialist of the Main Miner's Department, Candidate of Technical Sciences
(Kovdorsky GOK JSC)
Shchukin Yu.G., General Director, Professor, Doctor of Technical Sciences,
Bychkov S.V., Head of the Technical Department
(NTC "Explosion Safety")
Bolotova Y.N., Executive Director
(ANO "NOIV")
Vyatkin M.N., Head of D&B projects
(LLC "SPETSVMTECH")

Binary borehole explosive charge for rock destruction

Keywords:charge, detonation, bore diameter, rocks, ore, militant

Due to the significant increase in the cost of energy supply in the total balance of mineral extraction, the relevance of reducing the costs of the enrichment complex is obvious. Consequently, the requirements for the quality of crushing rock mass during its explosive breaking are increasing. This article presents the theoretical and practical prerequisites for the use of binary borehole charges of explosives, due to which the solution of this problem is achieved. The analysis of experimental industrial explosions is given, the results of explosions in apatite ore are shown.

Bibliographic list:
  1. Afanasenkov A.N., Galkin V.V. The use of recyclable explosive materials to increase the effectiveness of the explosion // Physics of gorenje i explosion, 2001, vol. 37, No. 2
  2. Fokin V.A. Substantiation of geometric parameters of an elongated detonator for reverse initiation of borehole charges of gasified emulsion explosives.//Izvestiya vuzov. Mining Magazine, 2008, No. 4.
  3. Togunov M.B., Sapronov E.M., Shchukin Yu.G., Kolominov I.A., Semochkin R.V.,Fokin V.A. Improving the efficiency of blasting rocks with emulsion explosives // Technology and safety of blasting operations Materials of the scientific and technical conference "Development of resource-saving technologies in blasting", 2011, pp.123-133.
  4. Kutuzov B.N. Physico-technical bases of creation of emulsion and granular explosives and means of initiation / B.N. Kutuzov, S.A. Gorinov // Mining information and Analytical Bulletin – 2011. – No. 7. – pp. 34-52.
39-48

Section 2. State and improvement of explosives, devices and blasting agents
UDC 622.235
Vlasova E.A., PhD (Engineering), Senior Researcher,
Kozyrev S.A., Doctor of Technical Sciences, Chief Researcher
(Mining Institute of KSC RAS)

Study of physical and chemical characteristics of multi-component explosive compositions

Keywords:industrial explosives, granulotol, ammonium nitrate, diesel fuel, detonation velocity, gas harm, degree of realization of potential energy of explosives

The results of studies of multicomponent TNT-containing explosive mixtures are presented. Factors affecting the detonation ability of mixtures and the influence of the order of mixing of components on the quality of their preparation are considered. Calculation of energy characteristics and detonation parameters of explosive mixtures is carried out. Detonation velocities and gas hazardousness of the mixtures were determined under test site and field conditions. It is shown that the degree of realization of the potential energy of multicomponent TNT-containing mixtures in the reaction zone of the detonation wave depends on the formulation composition, charge diameter, and size of the components. TNT coarseness has the strongest influence on the detonation process. As the charge diameter increases, the influence of the formulation composition and component size on the degree of potential energy realization decreases. The detonation process of TNT-AS-DT mixtures even in 250 mm diameter boreholes is not ideal because only 65% of the potential chemical energy is realized in the reaction zone of the detonation wave.

Bibliographic list:
  1. Sosnin V.A. State and prospects for the development of industrial explosives // Explosive Engineering. - 2019. - № 123/80. - рр. 9 - 31.
  2. Apin A.Yа., Velina N.F. On the critical diameters of explosive charges and detonation rate of hexogen // Vzryvnoe delo, 63/20. - M.: Nedra, 1967.- рp.5-35.
  3. Khotin V.G., Khotina L.D., Shatalov N.E., Krieger G.E. Study of detonation ability of ammonia-selitrogenic explosives sensitized with hexogen. // Vzryvnoe delo, 68/25.- M.: Nedra, 1970. - рр.235-243.
  4. Parfenov A.K., Voskoboynikov I.M., Apin A.Ya. On the low detonation velocity of industrial explosives // Vzryvnoe delo, 60/17. -M. : Nedra, 1966, рp.29-33.
  5. Methods of testing low-sensitivity explosives: Method.rek. - Chernogolovka: Department of the Institute of Chemical Physics of the USSR Academy of Sciences, 1991.- 146 p.
  6. Drukovanyi M.F., Oberemok O.N. About the influence of water on detonation of water-resistant granulated explosives // Vzryvnoe delo, № 74/31. - M.: Nedra, 1974.- рр.17-27.
  7. Patent RF 2128156. Composition of explosive substance. Chikunov V.I., Shchapov Y.S., Mamonov P.I., Dolbin I.I. BI № 9. 1999.
  8. Klaus-Peter Breidung. ANDEX 2000-ammonia-selitrogen explosive improved with respect to blasting technique and environmental friendliness // Gluckauf.-1999, No.1.-p.34-40.
  9. Rebinder P.A. Selected Works. Surface phenomena in disperse systems. Physico-chemical mechanics. Nauka. 1979. 386 р.
  10. Surface-active substances: properties and application / A.A. Abramzon. - L.: Сhimiya, 1979. - 376 р.
  11. Voyutsky S.S. Course of colloid chemistry. - 2nd, revision. - Moscow: Сhimiya, 1975. - 512 р.
  12. Afanasenkov A.N., Kotova L.I., Kukib B.N. About operability of industrial explosives - Physics of Combustion and Explosion. - 2001, Vol. 37, No. 3, рр. 115 - 125.
  13. Kozyrev S.A., Vlasova, E.A., Sokolov A.V., Pugachev S.S., Mikhailov A.L. Experimental determination of the gas hazardousness of the modern industrial explosives (in Russian) // Labor safety in industry. 2008. №2. рр.40-43.
  14. Paramonov P.A. Research of the poisonous gases formation during the blasting operations in the coal mines (in Russian) // Works of MakNII, Vol. XV. Safety issues in coal mines. Госгортехиздат, 1963.- рр.261-300.
  15. Shvedov K.K., Dremin A.N. On Detonation Parameters of Industrial Explosives and Their Comparative Evaluation // Vzryvnoe delo, No. 76/33. M.: Nedra, 1976.- рр.137-150.
49-67
UDC 622.235.3
Maslov I.Yu., Ph.D., Chief Engineer,
Gorinov S.A., Doctor of Technical Sciences, scientific consultant
(Global Mining Explosive Russia LLC)

On the issue of the inhibitor content in emulsion explosives for use in sulfide ores

Keywords:emulsion explosives, mine water, pyrite, iron sulfates, inhibitors

To ensure the safety of the use of emulsion explosives (EE) in the extraction of sulfide-containing ores, the reactivity of these explosives is reduced by introducing inhibitors into their composition that slow down the rate of interaction of ammonium nitrate with pyrite. The paper presents a method for the theoretical determination of the required mass fraction of an inhibitor in EE to ensure the safe use of these explosives in sulfide ores. The results obtained are confirmed by experimental data. It is shown that there is a restriction on the possibility of using EЕ without special insulating charge shells, due to the degree of mineralization of mine waters. The work is of interest to specialists involved in improving the technology of blasting in the extraction of sulfide ores and increasing their safety level.

Bibliographic list:
  1. Guidelines for the prevention of spontaneous ignitions and explosions of explosives based on ammonium nitrate in the production of blasting in copper pyrite ores. - M.: Ministry of Metallurgy of the USSR, 1991. – 7 s.
  2. Study of the causes of unauthorized explosions at Lebedinsky GOK OJSC: report / Derzhavets A.S. - M .: CJSC "Explosion testing " 1997. - 25 p.
  3. Kolganov E.V. Emulsion industrial explosives. Book 1 (Compositions and properties) / E.V. Kolganov, V.A. Sosnin. - Dzerzhinsk, Nizhny Novgorod region: Publishing house of the State Research Institute "Crystal". - 2009. - 592 p.
  4. Xu Z.X. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite / Z.X. Xu, Q. Wang, X.Q. Fu // Journal of Hazardous Materials. - 2015. - No. 1. - V. 300. - Prop. 702–710.
  5. Kuprin V.P. On the possibility of using water-filled ammonium nitrate explosives for the destruction of sulfide ores / V.P. Kuprin, I.L. Kovalenko// Mining information analytical bulletin (scientific and technical journal). - 2010. - No. 8. - P. 131-136.
  6. Gorinov S.A. Emulsion explosives for the extraction of sulfide-containing rocks / Gorinov S.A., Maslov I.Yu., Overchenko M.N., Pustovalov I.A. // Burst works. - 2017. - No. 117/74. - S. 127-137.
  7. Katyshev S.F. Influence of additives on the interaction of ammonium nitrate with sulfide ore /S.F. Katyshev, V.N. Desyatnik, L.M. Teslyuk // Fire safety. - 2010. - T. 10. - No. 5. - S. 54-57.
  8. Katyshev S.F. Stabilization of the interaction of ammonium nitrate with sulfide ores /S.F. Katyshev, V.N. Desyatnik, L.M. Teslyuk // Fire safety. - 2012. - T. 21. - No. 5. - S. 42-44.
  9. Petrov E.A. Influence of urea on the thermal stability of ammonium nitrate explosives in sulfide environments / E.A. Petrov, P.I. Savin // Bulletin of the scientific center for the safety of work in the coal industry. - 2014. - No. 1. - P. 158-161.
  10. Petrov E.A. Study of the effect of stabilizing additives on the thermal decomposition of an emulsion explosive in a pyrite medium /E.A. Petrov, P.I. Savin, P.G. Tambiev, N.V. Bychin // Mining Journal of Kazakhstan. - 2016. - No. 1. - S. 18-21.
  11. Savin P.I. Study of the influence of stabilizing additives on the thermal stability of emulsion explosives in sulfide ores / P.I. Savin, E.A. Petrov, P.G. Tambiev, N.V. Bychin// Technologies and equipment of chemical, biochemical and food industries. Proceedings of the X All-Russian scientific-practical conference of students, graduate students and young scientists with international participation / Alt. state tech. un-t, BTI. - Biysk: Alt. state tech. university - 2017. - S. 64-68. - 536 p.
  12. Petrov E.A. Study of the influence of the concentration of inhibitory additives on the chemical resistance of emulsion explosives in a pyrite environment /E.A. Petrov, I.P. Vdovina, P.I. Savin // Bulletin of the scientific center for the safety of work in the coal industry. - 2018. - No. 1. - P. 54-58.
  13. Pokalyukhin N.A. Granular industrial explosive "Ditolan-S" for the development of sulfide ores / N.A. Pokalyukhin, S.A. Kabirov, A.A. Ibragimov, R.A. Ibragimov // Bulletin of the Technological University. - 2019. - T. 19. - No. 19. - S. 137-140.
  14. Kovalenko I.L. Inhibition of the interaction of pyrite with ammonium nitrate explosives / I.L. Kovalenko, V.P. Kuprin // Modern resource-energy-saving technology of gyrnicvirobnitsva. – 2013(11). - No. 1. - S. 84-91.
  15. Kovalenko I.L. Inhibition of the interaction of pyrite with ammonium nitrate explosives / I.L. Kovalenko, V.P. Kuprin // Modern resource-energy-saving technology of gyrnicvirobnitsva. – 2013(11). - No. 1. - S. 84-91.
  16. Ainbinder G.I. Study of the chemical compatibility of Grammotol T-20 and Grammonite TMM with host rocks and downhole waters of the underground mine of PJSC "Gaisky GOK" / G.I. Ainbinder, M.D. Demchishin, D.S. Pechurina, M.A. Zevakin, N.L. Poletaev, V.A. Sosnin.// Labor safety in industry. - 2016. - No. 4. - S. 47-52.
  17. Sveshnikov G.B. Electrochemical processes in sulfide deposits / G.B. Sveshnikov. – L.: Publishing house Leningrad. university - 1967. - 159 p.
  18. Ryss Yu.S. Geoelectrochemical exploration methods (Introduction to geoelectrochemistry) / Yu.S. Ryss. - L .: Nedra. - 1983. - 255 p.
  19. Komarov V.A. Geoelectrochemistry: Textbook / V.A. Komarov. - St. Petersburg: Ed. St. Petersburg University. - 1994. -136 p.
  20. Sobolev A.E. Kinetics of dissolution of pyrite and sphalerite in the presence of oxidizers: Thesis cand. chem. Sciences: 02.00.04/ Sobolev Alexander Evgenievich. - Tver. - 2004. - 280 p.
  21. Zhixiang XU Influence of Iron Ion on Thermal Behavior of Ammonium Nitrate and Emulsion Explosives / XU Zhixiang, LIU Dabin, HU Yiting, YE Zhiwen, W Yanan // Central European Journal of Energetic Materials, 2010. - No. 7(1). - Rr. 77-93.
  22. Golbraikh Z.E. Workshop on inorganic chemistry /Z.E. Holbreich. – M.: Higher school. - 1986. - 350 p.
  23. Maslov I.Yu. Issues of experimental substantiation of the safe use of ammonium nitrate explosives in sulfide-containing rocks / I.Yu. Maslov, S.A. Gorinov // Burst works. - 2020. - No. 126/83. - S. 68-84.
  24. Xing-Hua Xie. Thermal behavior and stability of emulsion explosives in the presence of ferrous ion/ Xing-Hua Xie, Yu-Qing Feng, Shang-Hao Liu, Jing Zhu// Journal of Thermal Analysis and Calorimetry. – 2020. – V. 139. – RR. 999–1006. https://doi.org/10.1007/s10973-019-08494-0.
  25. Maslov I.Yu. Influence of the type and content of the inhibitor on the detonation characteristics of sulfide-resistant explosive explosives / I.Yu. Maslov, S.A. Gorinov // Burst works. - 2020. - No. 129/86. - S. 188-205.
  26. Koroleva M.Yu. Kinetics of processes and quasi-equilibrium in concentrated inverse emulsions: Abstract. dis. ... Doctor of Chemical Sciences: 02.00.11// Koroleva Marina Yurievna. – M., 2011. – 32 p.
  27. Frank-Kamenetsky D.A. Fundamentals of macrokinetics. Diffusion and heat transfer in chemical kinetics / D.A. Frank-Kamenetsky. – Dolgoprudny: Izdat. house "Intellect", 2008. – 408 p.
  28. Orlova E.Yu. Chemistry and technology of explosives / E.Yu. Orlova. – L.: Chemistry. - 1973. – 688 p.
  29. Stolyarov P.N. Investigation of thermal resistance of emulsion explosives Fortis Eclipse in contact with sulfide-containing rocks and ores // Stolyarov P.N., Feodoritov M.I., Shemenev V.G., Lokhni X. / - In the book. Technology and safety of blasting operations: materials of the scientific and technical conference "Development of resource-saving technologies in blasting", held within the framework of the IV Ural Mining Forum on October 12-14, 2011 – Yekaterinburg: IM of the UBS RAS, 2012. - pp. 133-142.
  30. Maslov I.Yu. The influence of the type and content of the inhibitor on the detonation characteristics of sulfide-resistant EVV / Maslov I.Yu., Gorinov S.A. - Burst works. - 2020. - No. 129/86. - pp. 188-205.
  31. Komarov V.A. Geoelectrochemistry: Textbook / V.A. Komarov. – St. Petersburg: St. Petersburg University. - 1994. - 136 p.
  32. Patent for utility model No. RU 154388 "Sleeve for explosive cartridge" Maslov I.Yu., Bragin P.A., Sirotkin E.G.// Publ. 2015.08.20.
  33. Patent for utility model No. RU 154389 "Sleeve for an explosive cartridge"/ Maslov I.Yu., Bragin P.A., Sirotkin E.G.// Publ. 2015.08.20.
68-85
UDC 662.42
Kurashov A.S., Candidate of Technical Sciences, Acting Head of the Department of Technical Education,
Metlyakov D.V., post-graduate student of the Department of TTXV
(KNITU)
Lobanenkova N.A., Candidate of Technical Sciences, Senior Researcher
(JSC "FNPC "Research Institute of Applied Chemistry")

Development of piezoelectric means of initiation of civil purpose

Keywords:means of initiation, technological safety, explosives, electromechanical impact, high explosives, sensitization, sensitivity to mechanical influences

As a result of the conducted studies, the effect of sensitization of high explosives to the level of initiating explosives under electromechanical action was found. It was revealed that the increased sensitivity of high explosives to impact during tests with a piezoelectric element is not associated with thermal or shock-wave processes of electrical discharges. The effect of an electric field on the processes that result in an explosion leads to an increase in sensitivity and explosive transformation of explosives. The application of the phenomenon of sensitization of explosives in the electric field of a piezoelectric element allowed us to propose a scientifically based approach to the creation of new and promising means of initiation that can significantly reduce the range of products produced by the defense industry. And also to develop the design of a detonating device based on high explosives, while achieving safety, reliability and environmental friendliness.

Bibliographic list:
  1. Pat. 2104466 Rossijskaya Federaciya, MPK F42B 3/10. Kapsyul'-detonator (varianty) (Capsule detonator (variants))/ Andreev V.V., Neklyudov A.G., Pozdnyakov S.A. et al; zayavitel' i patentoobladatel' Novosibirskij zavod "Iskra". zayavl. 12.01.1996 ; opubl. 10.02.1998.
  2. Pat. 2089828 Rossijskaya Federaciya, MPK F42B 3/10. Detoniruyushchee ustrojstvo na osnove brizantnogo vzryvchatogo veshchestva (Detonating device based on high explosive)/ Lobanov V.N., Prokop'ev S.N., Rud'ko M.L.; zayavitel' i patentoobladatel' Rossijskij federal'nyj yadernyj centr - Vsesoyuznyj nauchno-issledovatel'skij institut eksperimental'noj fiziki. zayavl. 30.01.1995; opubl. 10.09.1995.
  3. Gil'manov R.Z. et al, Razrabotka ekologicheski bezopasnyh iniciiruyushchih vzryvchatyh veshchestv (Development of environmentally safe initiating explosives). - «Vestnik KTU» = "Bulletin of KTU". - 2012. – Vol. 15, No. 13.- pp. 55-56.
  4. Badretdinova L.H., Vahidov R.M. Sovremennoe sostoyanie sensibilizacii vtorichnyh energonasyshchennyh materialov pod vliyaniem elektricheskogo polya (The current state of sensitization of secondary energy-saturated materials under the influence of an electric field)/ Vestnik tekhnologicheskogo universiteta = Bulletin of the Technological University. 2014, Vol. 17, No. 15, pp.77-81.
  5. Kiryushchenkova N.A., Fadeev D.V., Dzhangiryan V.G. et al. Zakonomernosti iniciirovaniya vzryva brizantnyh vzryvchatyh veshchestv pri elektromekhanicheskom vozdejstvii (Regularities of the initiation of the explosion of high explosives under electromechanical action)/ Boepripasy i vysokoenergeticheskie kondensirovannye sistemy = Ammunition and high-energy condensed systems. 2016, No. 3, pp. 18-20.
  6. Vahidov R.M., Iskhakov T.N., Bazotov V.YA. et al. Elektricheskaya sensibilizaciya brizantnyh VV (Electrical sensitization of blasting explosives)/ Boepripasy i speckhimiya = ammunition and special chemicals 2012, No.2, pp.73-76.
  7. Pat. 2599125 Rossijskaya Federaciya, MPK F42C 1/04. DETONIRUYUSHCHEE USTROJSTVO MEKHANICHESKOGO VZRYVATELYA (DETONATING DEVICE OF A MECHANICAL FUSE)/ Bazotov V.YA., Dzhangiryan V.G., Iskhakov T.N., et al; zayavitel' i patentoobladatel' Akcionernoe obshchestvo "Muromskij priborostroitel'nyj zavod". zayavl. 28.09.2015; opubl. 10.10.2016.
  8. Pat. 2302607 Rossijskaya Federaciya, MPK F42C19/10. Detoniruyushchee ustrojstvo mekhanicheskogo vzryvatelya (Mechanical fuse detonating device) / Bazotov V.YA., Vahidov R.M., Iskhakov T.N et al; zayavitel' i patentoobladatel' Kazanskij gosudarstvennyj tekhnologicheskij universitet. zayavl. 31.10.2005; opubl. 10.07.2007.
86-96

Section 3. Use of combustion andexplosion actions in industry
UDC 539.3
Mukhutdinov A.R., Doctor of Technical Sciences, Professor of the Department "Technology solid chemical substances",
Garifullin R.S., Candidate of Technical Sciences.of Sciences, Head of the Department
(State educational institution of higher education "Kazan State Technological University")

Investigation of the combustion process of solid fuels gorenje in the furnace equipment

Keywords:computer model, gorenje, solid fuel, operational parameters, boiler design

Currently, three-dimensional computer modeling of the gas dynamics of boiler equipment is very relevant. This article shows a computer study of the solid fuel combustion process in furnace equipment. The Phoenics computational fluid dynamics software package was used to study the boiler operating modes. Three-dimensional modeling of the boiler design was carried out in Autodesk Inventor, and the aerogasodynamic situation inside the furnace chamber was determined in Phoenics. The obtained simulation results are in good agreement with the results of the natural experiment.

Bibliographic list:
  1. D. Khzmalyan. Gorenje teoriya i topochnye device / D.M. Khzmalyan, Ya.A. Kagan / Textbook for university students. studies. institutions. - M.: Energiya, 1976. - 488 p.
  2. M. Shchegoleva. Fuel, furnaces and boiler installations / M.M. Shchegolev / M.: State. Publishing House of literature on construction and architecture, 1953. - 544 p.
  3. Petrashvili O.M. Measuring the temperature of combustion products / O.M. Petrashvili, O.G. Tsibino / M.:Energoatomizdat, 1984. - 112 P.
  4. V. Bogomolov., V.V. Bogomolov, N.V. Artemyeva, A.N. Alekhnovich, Thermal engineering and physico-mechanical characteristics of Maiko-Ben coal / / Electric stations. 2007. No.7. pp. 10-16.
  5. Mukhutdinov A.R. Neural network optimization of the solid fuel combustion process in power plants to minimize harmful emissions / A.R. Mukhutdinov, Z.R. Vakhidova, G.M. Mukhutdinova / / Bulletin of Kazan. technol. un-ta. – 2013.16, No. 2. – pp. 76-78.
  6. Mukhutdinov A.R. Modeling of the combustion process of solid fuel in a furnace device / A.R. Mukhutdinov, Z.R. Vakhidova, M.G. Efimov / / Kazakh Bulletin. technol. un-ta. – 2014.17, No. 20. – pp. 114-116.
  7. Mukhutdinov A.R. Neural network modeling and optimization of complex processes and processes of thermal power equipment / A.R. Mukhutdinov, G.N. Marchenko, Z.R. Vakhidova // Kazan: Kazan State University. Engr. university, 2011. - 296 p.10.
  8. Abramovich G.N. Applied gas dynamics. / G.N. Abramovich / M.: Nauka, 1976. – 344s.
  9. Energy fuel of the USSR / handbook Edited by N. T.A. Zikeev / M.: Energiya, 1968. - 112 P.
97-106

Section 4. Ecology and safety during blasting operations
UDC 622.235
Samusev P.A., Candidate of Engineering Sciences, technical expert,
Novinkov A.G., Candidate of Engineering Sciences, head of the Buildings and Structures Expertise Sector,
Protasov S.I., Candidate of Engineering Sciences, director,
Zavialov A.N., lead engineer
(Innovation firm «KUZBASS-NIIOGR»)
Samusev P.A., docent,
Novinkov A.G., docent
(T.F. Gorbachev Kuzbass State Technical University)

Comparative assessment of seismic action mass explosions when using various initiation systems

Keywords:open-pit mining blasts, seismic safety of open-pit mining blasts, seismic blasting, regression analysis of experimental data, initiator technology systems at open-pit mining blasts

Methods for seismic effects prediction in open-pit mining blasts, based on the use of handbook data, commonly require taking into account parameters that can vary greatly even within one industrial site. These parameters are unknown often. Also, these methods do not take into account the specifics of the initiator technology at a specific open-pit mine. This leads to inconsistent results in which the predicted seismic effects may differ significantly from the observed ones.

Bibliographic list:
  1. FNP «Pravila bezopasnosti pri proizvodstve, hranenii i primenenii vzryvchatyh materialov promyshlennogo naznacheniya» (utverzhdeny prikazom Rostekhnadzora ot 03.12.2020 g. № 494, zaregistrirovany v Minyuste Rossii 25.12.2020 g. № 61824).
  2. Sher E.N. Sejsmicheskie kolebaniya pri massovyh vzryvah na kar'erah s ispol'zovaniem vysoko-tochnoj elektronnoj i neelektricheskoj sistem vzryvaniya // E.N. SHer, A.G. CHernikov // Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh (Journal of mining science), 2009. – № 6. – Page. 54-60.
  3. Pazynich A. YU. Sejsmicheskoe vozdejstvie massovyh vzryvov na nazemnye sooruzheniya (na primere razreza “Neryungrinskij”): avtoref. dis. … kand. tekhn. nauk. — Neryungri: Tekhnicheskij institut (filial) GOU VPO YAGU, 2009.
  4. Muchnik S.V. O snizhenii sejsmicheskogo effekta pri massovyh vzryvah na kar'erah // Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh (Journal of mining science), 2011. – № 4. – Page. 68-77.
  5. Lyashenko V.I. Sozdanie i vnedrenie sejsmobezopasnoj tekhnologii podzemnoj razrabotki uranovyh mestorozhdenij / V.I. Lyashenko. A.H. Dudchenko // Nauchnyj vestnik nacional'nogo gornogo universiteta, 2012. – №3. – Page. 54-62.
  6. Reza Nateghi. Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures. Soil Dynamics and Earthquake Engineering, 2012, No. 43. Page 133-138.
  7. Duvall W. I., Fogelson D.E. Review of criteria for estimating damage to residences from blasting vibrations // Report of investigations (RI 5968). US Department of the Interior. Bureau of Mines, 1962.
  8. Kutuzov B.N. Bezopasnost' sejsmicheskogo i vozdushnogo vozdejstviya massovyh vzryvov / Kutuzov B.N., Sovmen V.K., Ekvist B.V., Vartanov V.G.: Uchebnoe posobie dlya vuzov. – M.: Izdatel'stvo Moskovskogo gosudarstvennogo gornogo universiteta. - 2004. – 180 pages.
  9. Mosinec V.N. Drobyashchee i sejsmicheskoe dejstvie vzryva v gornyh porodah / Mosinec V.N. - M.: Nedra. - 1976. - 271 pages.
  10. Cejtlin Ya.I. Sejsmicheskie i udarnye vozdushnye volny promyshlennyh vzryvov / Cejtlin Ya.I., Smolij N.I. - M.: Nedra. - 1981. - 192 s.
  11. Novin'kov A.G. Sejsmicheskaya bezopasnost' podzemnogo gazoprovoda pri massovyh promyshlennyh vzryvah na ugol'nom kar'ere / A.G. Novin'kov, S.I. Protasov, P.A. Samusev, A.S. Gukin // Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta, 2013. – № 6 (100). - Page. 51-55.
  12. Novin'kov A.G. Sejsmicheskaya bezopasnost' podzemnyh gornyh vyrabotok pri vedenii vzryvnyh rabot na zemnoj poverhnosti / A.G. Novin'kov, S.I. Protasov, P.A. Samusev // Bezopasnost' truda v promyshlennosti, 2018. – № 8. – Page. 64-68.
  13. Duvall W.I. Vibrations from instantaneous and millisecond-delayed quarry blasts. / W.I. Duvall, Ch. F. Johnson A. V.C. Meyer, J.F. Devin. Report of investigations, RI 6151. US Dept. of Interior. Bureau of Mines. Washington, 1963. – 34 pages.
  14. OSM Blasting Performance Standards. 30 Code of Federal Regulations. Sec. 816.67. Use of Explosives: Control of adverse effects.
  15. BS 7385-2:1993. British Standard. Evaluation and measurement for vibration in buildings. Part 2: Guide to damage levels from groundborne vibration. BSI, 1993. – 15 pages.
  16. Novin'kov A.G. Ocenka sejsmobezopasnosti promyshlennyh vzryvov / A.G. Novin'kov, S.I. Protasov, A.S. Gukin // Bezopasnost' truda v promyshlennosti, 2013. – № 6. – Page 40-46.
  17. GOST R 52892-2007. Vibraciya i udar. Vibraciya zdanij. Izmerenie vibracii i ocenka ee vozdejstviya na konstrukciyu. M.: Standartinform, 2008. - 52 pages.
  18. DIN 4150-3:1999. Structural Vibration. Part 3: Effects of vibration on structures. 1999. – 11 pages.
  19. Novin'kov A.G. Statisticheskaya nadezhnost' prognozirovaniya pikovoj skorosti kolebanij pri massovyh promyshlennyh vzryvah / A.G. Novin'kov, S.I. Protasov, P.A. Samusev, A.S. Gukin // Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh, 2015. – №5. – Page.50-58.
  20. Novin'kov A.G. Prakticheskij metod ucheta preobladayushchej chastoty kolebanij pri opredelenii sejsmobezopasnyh rasstoyanij pri vedenii vzryvnyh rabot na kar'erah / A.G. Novin'kov, S.I. Protasov, P.A. Samusev // Vzryvnoe delo, 2016. – №115/72. – Page 214-225.
  21. Novin'kov A.G. Opredelenie sejsmobezopasnyh rasstoyanij pri massovyh promyshlennyh vzryvah s uchetom preobladayushchej chastoty kolebanij / A.G. Novin'kov, S.I. Protasov, P.A. Samusev, A.S. Tashkinov // Vestnik KuzGTU. 2016. – №6 (118). - Page 56-62.
  22. Novinkov A.G. Determination of seismic safe distances during mining blasts with consideration of a dominant vibration frequency / Novinkov A.G., Tashkinov A.S., Protasov S.I., Samusev P.A. // Coal in the 21st Century: Mining, Processing and Safety 2016. - Page 202-205.
  23. CHashkin, Yu. R. Matematicheskaya statistika: Analiz i obrabotka dannyh / Yu. R. CHashkin. — Izd. 2-e, pererab. i dop. — Rostov-na-Donu: Feniks, 2010 . – 236 pages.
  24. GOST 27751-2014 «Nadezhnost' stroitel'nyh konstrukcij i osnovanij. Osnovnye polozheniya». 2014.
  25. Novin'kov A.G. Opyt upravleniya sejsmobezopasnost'yu massovyh vzryvov / A.G. Novin'kov, S.I. Protasov, P.A. Samusev // Vestnik Nauchnogo centra VostNII po promyshlennoj i ekologicheskoj bezopasnosti. 2019. – № 3. – Page 45-53.
  26. ISEE Blasters Handbook. 18TH edition / International Society of Explosives Engineers, 2011.
107-133
UDC 622:235
Kozyrev S.A., Doctor of Technical Sciences, Chief Researcher,
Usachev E.A., Leading technologist,
Sokolov A.V., Leading Technologist
(Mining Institute of the KNC RAS)

Assessment of seismic effect of mass explosions in the open pit of the Zhelezhny mine of Kovdorsky GOK JSC on buildings and structures of the industrial site of the enrichment complex

Keywords:quarry, explosives, borehole charges, mass explosion, seismic effect of explosions

Justification is given for the reference value of the permissible displacement velocity for the building of the medium and fine crushing building (DK1) to ensure seismic safety of buildings and structures during explosions (the probability of occurrence of light damage in individual buildings and structures is about 0.1). According to the methodology of GOST 52892-2007 "Vibration and shock. Vibration of buildings. Measurement of vibration and assessment of its impact on the structure" the maximum permissible value of velocity Vdop was determined. The following parameters are taken into account. Reference velocity value equal to 20 mm/s. Corrections for the type of soil at the location where the structure is installed. Corrections for the type of structure depending on the type and construction of the structure, the material of construction and the type of foundation. Corrections for the distance between the vibration source and the vibration measurement location. Corrections for the type of vibration source. Experimental evaluation of seismic effect of mass explosions on the building of medium and fine crushing building (DK1) was carried out. Empirical dependences of the change of vector displacement velocity on the reduced distance were obtained. Empirical dependences for determining the safe distance from the mass explosion to the protected object depending on the permissible displacement velocity are obtained.

Bibliographic list:
  1. Federal norms and rules in the field of industrial safety from 03.12.2020. Order No. 494 "Safety Rules for Production, Storage and Use of Industrial Explosives".
  2. Report on the results of work on inspection of building structures of the medium and fine crushing building of the OK crushing section inv. No. 1200000017 of Kovdorsky GOK JSC. EnergoExpert LLC, St. Petersburg. 2022.
  3. GOST R 52892-2007 Vibration and shock. Vibration of buildings. Measurement of vibration and assessment of its impact on the structure. - Moscow: Standartinform, 2007. - 32 p.
  4. Guidelines for analyzing the hazard of accidental explosions and determining the parameters of their mechanical action. RB G-05-039-96: Normative document. - Moscow: NTC NRS Gosatomnadzor of Russia, 2000.
  5. Mosinets V.N. Crushing and seismic action of explosion in rocks. - Moscow: Nedra, 1976. - 271 p.
134-150
UDC 622.2.614.83 (075.8)
Tyupin V.N., professor, doctor of technical sciences. Sciences, leading researcher
(Belgorod State National Research University, JSC "VIOGEM")

Seismic-safe delay intervals during blasting of rocks of a dry dock in cressed conditions

Keywords:dry dock, bathoport, soil-cement piles, drilling and blasting parameters, interference of seismic blast waves, maximum deceleration intervals, industrial test results

The parameters of drilling and blasting are given for blasting a granite-gneiss massif in cramped conditions during the construction of a dry dock in order to preserve the integrity of the bathoport, soil-cement piles, ensure a given degree of crushing of rocks, as well as the quality of the soil leveling of the dry dock. One of the important seismic safety parameters in cramped conditions is the deceleration interval. As a result of the analysis of literary sources, it was established that with an increase in the deceleration interval to 100 ms, the speed of oscillations of the array from the UWV decreases by 2-5 times. The maximum deceleration intervals have been calculated to reduce the seismic effect of an explosion in dry dock arrays with various physical and technical properties, which are 3.0-44.0 ms. Industrial tests have established that at deceleration intervals of 20 ms, UW interference occurs in 15% of cases, which leads to an increase in the oscillation speed of the array by 2 times. Maintaining VR with deceleration intervals of 50 ms ensures the absence of interference from SVV. In the process of conducting VR, it was found that the vibration speeds do not exceed 27 mm/s, which is significantly less than the permissible 100-500 mm/s for hydraulic structures. The influx of water through the dam has not increased, and the integrity of the bathport is not compromised

Bibliographic list:
  1. Tyupin V.N., Yanitsky E.B., Polyakh A.E., Ignatenko I.M. Seismically safe parameters of confined blasting in levelling dry dock bottom // Eurasian Mining. 2022. No. 2. pp. 16-19. DOI: 10.17580/em.2022.02.04.
  2. Ganopolsky M.I., Baron V.L., Belin V.A., Pupkov V.V., Sivenkov V.I. Methods of blasting operations. Special blasting operations // Ed. prof. V. A. Belina. – M., Ed. Moscow State Humanitarian University, 2007. - 563 p.
  3. Kutuzov B. N., Tyupin V. N. Method for calculating the parameters of drilling and blasting operations in quarries to ensure the specified quality of rock crushing // Mining Journal. 2017. No. 8. P.66-69. DOI: 10.17580/gzh.2018.01.09.
  4. Tyupin V.N., Anisimov V.N. Development of methods for maintaining the stability of open surfaces of fractured mountain ranges during mass explosions // Mining information and analytical bulletin (scientific and technical journal). 2019.-No.4.-P.53-62. DOI: 10.25018/0236-1493-2019-04-0-53-62.
  5. Sadovsky M.A. Seismicity of explosions and seismology // Izv. Academy of Sciences of the USSR. Physics of the earth. 1987. No. 11. pp. 34-42.
  6. Adushkin V.V., Spivak A.A. Underground explosions. – M.: Nauka, 2007. - 579 p.
  7. Mosinets V.N. Crushing and seismic action of explosion in rocks. – M.: Nedra, 1976. - 270 p.
  8. Seismic safety during blasting operations. / Auth. V.K. Sovmen, B.N. Kutuzov, A.L. Maryasov, B.V. Ekvist, A.V. Tokarenko. – M.: Publishing house. “Mining Book”, 2002. - 228 p.
  9. Ganopolsky M.I., Smoliy N.I. Harmful effects of industrial explosions. Seismic effect of explosions. / Ed. M. I. Ganopolsky. – M.: Publishing house. “Sputnik+”, 2021. – 247 p.
  10. Tseytlin Ya. I., Smoliy N. I. Seismic and shock air waves of industrial explosions. - M.: Nedra, 1981. - 192 p.
  11. Tsibaev S.S., Renev A.A., Pozolotin A.S., Mefodiev S.N. Assessment of the influence of dynamic seismic influences on the stability of underground mine workings // Mining Information and Analytical Bulletin. 2020. No. 2. pp. 101–111. DOI: 10.25018/0236-1493-2020-2-0-101-111.
  12. Wang W. H., Leng Z. D., Lu W .B., et al. Effect of free face numbers on blasting vibration in rock blasting [J]. Mining and Metallurgical Engineering, 2018, 38(6): 17–22. DOI: 10.3969/j.issn.0253-6099.2018.06.004.
  13. Sun M., Wu L., Yang Q., et al. Time-Frequency analysis of blasting seismic signal based on CEEMDAN [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(3): 76–82. DOI: 10.12141/j.issn.1000-565X.190179.
  14. Zhang S.H., Liu L.S., Zhong Q.L., et al. Energy distribution characteristics of blast seismic wave on open pit slope [J]. Journal of Vibration and Shock, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.
  15. Gui Y.L., Zhao Z.Y., Jayasinghe L. B., Zhou H.Y., Goh A.T.C., Tao M. Blast wave induced spatial variation of ground vibration considering field geological conditions // International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 101, pp. 63-68. DOI: 10.1016/j.ijrmms.2017.11.016.
  16. Manchao H., Fuqiang R., Dongqiao L. Rockburst mechanism research and its control // International Journal of Mining Science and Technology. 2018. Vol. 28. No. 5. Pr. 829-837.
  17. Bulbasheva I. A. Control of the seismic impact of explosions on power transmission line supports during open-pit mining. – Author's abstract. dis. Ph.D. tech. Sciences, specialty 25.00.20. – St. Petersburg: St. Petersburg Mining University, 2019. - 19 p.
  18. Korshunov G.I., Bulbasheva I.A., Afanasyev P.I. Study of seismic impact on power lines during blasting operations // Labor Safety in Industry. 2019. No. 4. pp. 39-43.
  19. Zykov V. S., Ivanov V. V., Sobolev V. V. Study of the influence of massive industrial explosions on the stability of underground mine workings during open-underground mining of coal deposits // Labor Safety in Industry. 2018. No. 11. pp. 19-23.
  20. Tyupin V. N., Khaustov V. V. Dependence of the geomechanical state of a fractured massif on the deceleration interval in the zone of seismic action of mass explosions // Mining information and analytical bulletin (scientific and technical journal). 2021. No.2. pp. 45-54. DOI: 10.25018/0236-1493-2021-2-0-45-54.
  21. Tyupin V.N. Justification of the maximum deceleration interval to reduce the seismic effect of mass explosions in quarries // Mining Information and Analytical Bulletin (scientific and technical journal). 2022. No. 12. pp. 67–76. DOI: 10.25018/0236_1493_2022_12_0_67.
  22. Tyupin V.N. Dynamics of propagation of deformation waves in fractured massifs during the explosion of explosive charges // Explosive business. 2023. No. 138/95. P.114-130.
  23. Rakishev B.R. Forecasting technological parameters of blasted rocks in quarries. – Alma-Ata: Science, 1983. - 240 p.
  24. Tyupin V.N., Rubashkina T. I. Engineering formulas for calculating the sizes of zones of destruction and deformation of fractured massifs by explosion in the quarries of Transbaikalia // Mining Journal. 2021. No. 7. P.40-44. DOI: 10.17580/gzh.2021.07.06.
  25. Shlyapin A.V. About the quasi-static phase of development of a technological explosion // Explosive business. 2023. No. 139/96. pp. 5-13.
  26. Ganopolsky M.I., Kantor V.Kh., Pupkov V.V. Harmful effects of industrial explosions. Scattering of pieces during explosions. Covering explosion sites. Dust and gas cloud. / Ed. M. I. Ganopolsky. – M.: Publishing house. “Sputnik+”, 2022. – 271 p.
  27. Baum F.A., Orlenko L.P., Stanyukovich K.P., Chelyshev V.P., Shekhter B.I. Physics of explosion. – M.: Science. 1975. - 704 p.
  28. Distribution and correction of indicators of physical properties of rocks / Author. M. M. Protodyakonov, R. I. Teder, E. I. Ilnitskaya and others - M.: Nedra, 1981. - 192 p.
  29. Ignatenko I.M., Yanitsky E.B., Dunaev V.A., Kabelko S.G. Fractures of the rock mass in the quarry of the Zhelezny mine of JSC Kovdor Mining and Processing Plant // Mining Journal. 2019. No. 10. P.11-15.
151-167
UDC 628.512/515:504.3/4.054::[662.2-391.4:544.773.33]+54.062::[543.34::[543.555::543.544.5.068.7]+543.27.-8::543.272.32]
Bulushev D.A., technical engineer,
Smirnov S.P., vice technical director for control and quality
(«NITRO SIBIR» JSC)
Sultanov E.V., engineer, PhD student of Technosphere Safety department,
Akinin N.I., head of Technosphere Safety department, Prof., Doctor of Engineering Sciences
(FSFEI HE «Mendeleev University of Chemical Technology of Russia»)

The environmental harm mitigation from application of ammonium nitrate industrial explosives

Keywords:environmental harm, environmental safety, water-resistance, gaseous hazard, conductometric method, the Bichel bomb, nitrates, nitrogen oxides, industrial emulsion explosives, determining methods

Due to increase in the number of drilling and blasting operations, the environmental load on the associated areas raises manifold. Reducing the environmental pollution level from mining activities is enshrined in Federal Law on Environmental Protection №. 7-FZ. The release of pollutants into the environment during drilling and blasting operations occurs for several main reasons: due to the long-term charge presence in conditions of a flooded blasthole and the formation of toxic explosion products as a result of explosion process. To minimize contamination from the most commonly used ammonium nitrate industrial explosives, which according to the Federal Environmental, Industrial and Nuclear Supervision Service of Russia is more than 80 % total amount of all industrial explosives, the authors proposed specially developed laboratory methods of water-resistance and gaseous hazard assessment, which are mandatory and regulated parameters for solving the problem. Based on carried out experimental work, recommendations are made to reduce the impact of pollutants possible formation.

Bibliographic list:
  1. Russian Federation. Laws. On environmental protection: Federal Law № 7-FZ: (adopted by the State Duma 10 january 2002: with changes from 4 august 2023: edition valid from 15 september 2023). – Text: on-line // Official Internet Portal of Legal Information: [web-site]. – 2023. – URL: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102074303 (accessed on: 28.09.2023)
  2. State online portal «Official network resources of the President of Russia»: official web-site. – Moscow. – Updated within 24 hours. – URL: http://kremlin.ru/events/president/news/62582 (accessed on: 28.09.2023). – Text : on-line;
  3. State online portal «Official network resources of the President of Russia»: official web-site. – Moscow. – Updated within 24 hours. – URL: http://kremlin.ru/events/president/news/70565 (accessed on: 28.09.2023). – Text : on-line;
  4. Garmashov A.S., Akinin N.I., Mikheev D.I. Ocenka ekotoksichnosti produktov vzryva promyshlennyh vzryvchatyh veshchestv (Evaluation of ecotoxicity of products of explosion of industrial explosives). XXI vek: itogi proshlogo i problemy nastoyashchego plyus = XXI Century: Resumes of the Past and Challenges of the Present plus. 2020. Т. 9. Vol. 3 (51). pp. 143 – 146;
  5. Garmashov A.S., Frolkina M.V., Mikheev D.I., Akinin N.I. Nekotorye podhody k ocenke ekotoksichnosti produktov vzryva promyshlennyh VV (Some approaches to evaluating ecotoxicity of industrial explosives). Uspekhi v himii i himicheskoj tekhnologii = Advances in chemistry and chemical technology. 2020. Т. 34. Vol. 9 (232). pp. 86 – 88;
  6. Garmashov A.S., Frolkina M.V., Mikheev D.I., Akinin N.I. K voprosu ob ocenke ekotoksichnosti produktov vzryva promyshlennyh VV (On the issue of assessing the ecotoxicity of industrial explosives explosion products) // (21 – 22 april 2020 Moscow) // Ⅳ Mezhdunarodnaya nauchno-prakticheskaya konferenciya molodyh uchenyh po problemam tekhnosfernoj bezopasnosti: materialy konferencii = Ⅳ International Scientific and Practical Conference of Young Scientists on Technosphere Safety Issues: Conference Proceedings. М.: MUCTR, 2020, Т., №., pp. 7 – 11;
  7. Akinin N.I., Garmashov A.S., Mikheev D.I. Ocenka ekotoksichnosti produktov vzryva promyshlennyh vzryvchatyh veshchestv (Ecotoxicity assessment of the industrial explosives explosion products). Bezopasnost' truda v promyshlennosti = Occupational Safety in Industry. 2021. Т., Vol. 2. pp. 36 – 40;
  8. Annual report «On the activities of the Federal Environmental, Industrial and Nuclear Supervision Service of Russia in 2021»: web-site / Federal Environmental, Industrial and Nuclear Supervision Service of Russia. – Moscow. – Updated within 24 hours. – URL: https://www.gosnadzor.ru (accessed on: 28.09.2023). – Text : on-line;
  9. GOST 14839.13-2013. Commercial explosives. Methods of waterproofness determination : interstate standard : official publication : approved and put in force by the Order of the Federal Technical Regulation and Metrology Agency 18 february 2014 № 27-ст : put in force instead GOST 14839.13-69 : effective date 2014-09-01 : edition valid from 1 april 2019 / prepared by the OAO «State Research and Development Institute «Krystall» (ОАО «GosNII «Kristall»). – Moscow: Standartinform, 2019. 11 p.;
  10. GOST 32411-2013. Commercial explosives. Methods of determination of electric capacitance, density and resistance to water for emulsions : interstate standard : official publication : approved and put in force by the Order of the Federal Technical Regulation and Metrology Agency 1 september 2014 № 25-ст : original enactment : effective date 2014-09-01 / prepared by the OAO «State Research and Development Institute «Krystall» (ОАО «GosNII «Kristall»). – Moscow: Standartinform, 2014. 12 p.;
  11. Hou Xueshi. Testing method for semi-finished products of emulsion explosives. Explosive Materials. 1984. Vol. 3. pp. 26 – 27;
  12. Li Bing. Study on the stability of the emulsion explosive and the method of characterizations / magisterskaya dis. po special’nosti «Prikladnaya himiya» / Bing Li; Anhui University of Science and Technology. – Anhui Province. 2008. 122 p.;
  13. Chukareva A.A., Mikheev D.I. Sravnitel'nyj analiz metodik rascheta vybrosov vrednyh (zagryaznyayushchih) veshchestv v atmosfernyj vozduh stacionarnymi istochnikami dobyvayushchej promyshlennosti (Comparative analysis of methods for calculating emissions of harmful (polluting) substances into the atmospheric air by stationary sources of mining) // (17 – 18 may 2022 Moscow) // Ⅴ Mezhdunarodnaya nauchno-prakticheskaya konferenciya molodyh uchenyh po problemam tekhnosfernoj bezopasnosti: materialy konferencii = Ⅴ International Scientific and Practical Conference of Young Scientists on Technosphere Safety Issues: Conference Proceedings. М.: MUCTR. 2022. Т. №. pp. 145 – 149;
  14. Bulushev D.A., Sultanov E.V., Smirnov S.P. Kolichestvennoe opredelenie nitrat-iona v vodnyh rastvorah, kontaktiruyushchih s emul'siej na osnove ammiachnoj selitry (Quantitative determination of nitrate-ion in aqueous solutions in contact with an emulsion based on ammonium nitrate) // (24 – 25 april 2018 Moscow) // Ⅲ Mezhdunarodnaya nauchno-prakticheskaya konferenciya molodyh uchenyh po problemam tekhnosfernoj bezopasnosti: materialy konferencii = Ⅲ International Scientific and Practical Conference of Young Scientists on Technosphere Safety Issues: Conference Proceedings. – М.: MUCTR. 2018. Т. №. pp. 67 – 71;
  15. Zawadzka-Małota I. Testing of mining explosives with regard to the content of carbon oxides and nitrogen oxides in their detonation products. Journal of Sustainable Mining. 2015. T. 14. Vol. 4. pp. 173 – 178;
  16. Vlasova E.A., Derzhavec A.S., Kozyrev S.A., Kut'in N.G., Fil'chakov A.A. Ocenka vzryvchatyh harakteristik i gazovoj vrednosti promyshlennyh VV (Assessment of explosive characteristics and gas hazard of industrial explosives). Vzryvnoe delo = Blasting work. 2008. Т. Vol. 99-56. pp. 119 – 136;
  17. Kozyrev S.A., Vlasova E.A., Sokolov A.V., Pugachev S.S., Mihajlov A.L. Eksperimental'noe opredelenie gazovoj vrednosti sovremennyh promyshlennyh VV (Experimental determination of gas hazard of modern industrial explosives). Bezopasnost' truda v promyshlennosti = Occupational Safety in Industry. 2008. Т. Vol. 2. pp. 40 – 43;
  18. Kozyrev S.A., Vlasova E.A., Sokolov A.V., Pugachev S.S., Mihajlov A.L. Ob ocenke norm gazovoj vrednosti sovremennyh promyshlennyh VV (On the assessment of gas hazard standards of modern industrial explosives). Bezopasnost' truda v promyshlennosti = Occupational Safety in Industry. 2008. Т. Vol. 4. pp. 36 – 38;
  19. Kozyrev S.A., Vlasova E.A. Gazovaya vrednost' vzryvchatyh veshchestv, primenyaemyh v gornodobyvayushchej promyshlennosti (Gas hazard of explosives used in the mining industry). Gornaya promyshlennost' = Russian Mining Industry. 2021. Vol. 5. pp. 106 – 111;
  20. Domanov V.P., Varnakov Yu.V., Batrakov D.N., Pleshakov K.A., Varnakov K.Yu. Issledovaniya gazovoj vrednosti vzryvchatyh veshchestv, prednaznachennyh dlya formirovaniya skva-zhinnyh zaryadov (Studies of gas hazard explosives intended to form bore-hole charges). Vestnik nauchnogo centra po bezopasnosti rabot v ugol'noj promyshlennosti = Bulletin of research center for safety in coal industry (industial safety). 2012. Vol. 2. pp. 51 – 57.
168-184
UDC 504.54
Ivlieva M.S., PhD student
(TulSU)

Geotechnologies of landscape-evolutionary modeling of dangerous ecological processes in the central region of Russia

Keywords:ecological and geomorphological mapping, landscape of the Moscow region, dangerous ecological processes, photographs, landscape–evolutionary modeling

The territory of the central region has historically undergone multiple geomorphological changes due to rapidly developing anthropogenic activity. All this has led to the emergence of a large volume of cartographic materials reflecting environmental issues. The purpose of the study is to analyze ecological and geomorphological material on the example of the Moscow region, reflecting dangerous geomorphological processes, such as the area of karst development, landslides, fresh erosion cuts, ravines, subsidence of loess rocks, karst–suffusion funnels and depressions, as well as the selection of prediction equations for dynamic modeling of dangerous geomorphological processes. The study was conducted according to literary sources. The article describes the digital relief models used for mapping hazardous environmental processes, and also provides formulas for dynamic modeling of geomorphological processes and the probability of erosion damage. Equations and formulas developed by American scientists Spangler M.G., Hengl T., Koons P.O. allow us to identify the dynamics of changes and make an environmental forecast. The method of remote landscape indication of hazardous environmental processes works together with the use of a large-scale series of multi-zone, spectrosonal and synthesized prints of satellite photographs. Determining the probability of slope destruction makes it possible to prevent the construction of large industrial facilities that can cause global destruction. Indicators of dynamic modeling of the development of geomorphological processes and the probability of slope destruction can be used together in the design of engineering surveys, as well as in assessing the environmental impact of existing structures both in the Moscow Region and beyond.

Bibliographic list:
  1. Roering J.J., Kirchner J.W., Dietrich W.E., 2001. Hillslope evolution by nonlinear, slope- dependent transport: steady state morphology and equilibrium adjustment timescales. Journal of Geophysical Research 106, 16,499–16,513.
  2. Ecological and geomorphological mapping of the Moscow region = Ecology-geomorphological mapping of the Moscow area / B.A. Novakovsky, Yu.G. Simonov, N.I. Tulskaya; Moscow State University named after M. V. Lomonosov, Geogr. fac. - Moscow: Nauch. mir, 2005 (Imprint. in type.). - 72 p., [12] l. color. maps.: ill., table.; 29 cm.; ISBN 5-89176-338-9 (in the region)
  3. Minár J., Evans I.S., 2008. Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95, 236–259. Montgomery D.R., Hallet B., Yuping L., Finnegan N., Anders A., Gillespie A., Greenberg H.M., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, Southeastern Tibet. Quaternary Research 62, 201–207.
  4. Cooke R.U., Doornkamp J.C., 1990b. In: Cooke, Doornkamp (Eds.), Mapping Geomorphology, pp. 22–63 (1990a).
  5. Wainwright L., 2008. Can modelling enable us to understand the role of humans in landscape evolution? Geoforum 39 (2), 659–674.
  6. Koons P.O., 1995. Modeling the topographic evolution of collisional belts. Annual Review Earth and Planetary Science 23, 375–408.
  7. Spangler M.G., Handy R., 1982. Soil Engineering. Harper and Row, New York.
  8. Mozhaeva Valentina Grigorievna. Geomorphological mapping by the method of profiling with the selection of aerial photographic standards: dissertation ... Candidate of Geographical Sciences: 11.00.00 / V.G. Mozhaeva. - Leningrad, 1967. - 471 p.: ill. + Adj. (16 p.: ill.; 44x30 cm.).
  9. Spiridonov Alexey Ivanovich. Geomorphological mapping / A.I. Spiridonov. - 2nd ed., reprint. and add. - Moscow: Nedra, 1985. - 183 p.: ill., maps.; 21 cm.
  10. The main cartographic works. // Designing and compiling general geographic maps of small scale: a textbook/ N.A. Bilibina, A.A. Makarenko, V.S. Moiseeva. – M.: MIIGAiK, 2010. Under the general editorship of A.A. Makarenko, p.8.
185-198

Section 5. Information
UDC 622.235
Vyatkin N.L., Doctor of Economics Sciences, Candidate of Technical Sciences, President,
Bolotova Y.N., Executive Director,
(National Organization of Explosive Engineers (ANO NOIV)

The results of the XXIII international conference on explosives held by ANO "NOIV" to solve the problems of mining and explosives

Keywords:conference, explosives, blasting, speaker, object

On the eve of the established annual holiday of explosive specialists – EXPLOSION DAY, the XXIII International conference on mining and blasting was held from September 18 to 22, 2023. It took place in the nearest Moscow region on the basis of the Amaks Krasnaya Pakhra chain hotel. A distinctive feature of this conference was the discussion of topical issues related to the production and supply of initiation agents, ammonium nitrate and explosives to mining enterprises and geophysical facilities, as well as problems of mining technology development under the conditions of sanctions and terrorist threat to dangerous production facilities, as well as one of the main issues under consideration, problems related to the development of the northern territories of the Arctic zone of the Russian Federation and the construction of facilities for the development of the Northern Sea Route.

199-210
UDC 622.235
Bersenev G.P., Candidate of Technical Sciences, Senior Researcher, General Director of the Association "Explosives of the Urals",
Regotunov A.S., Candidate of Technical Sciences, Senior Researcher,
Kutuev V.A., researcher
(Institute of Mining of the Ural Branch of the Russian Academy of Sciences)

Results of the scientific and production seminar of the ural explosives

Keywords:seminar, blasting, drilling, report, participants

On June 14 and 15, 2023, the Ural Explosives Association, together with the Institute of Mining of the Ural Branch of the Russian Academy of Sciences in Yekaterinburg and on the basis of a subsidiary of Metallinvest LLC, Protol LLC in Degtyarsk (Sverdlovsk region), held another scientific and production seminar on drilling and special blasting, in which they took part in a general the number of 45 people from 20 enterprises of the Sverdlovsk, Chelyabinsk, Kemerovo, Novgorod and Novosibirsk regions of Russia.

Bibliographic list:
  1. Bersenev G.P., Kutuev V.A. Itogi IX nauchno-prakticheskoj kon-ferencii vzryvnikov Urala // Izvestiya vysshih uchebnyh zavedenij. Gor-nyj zhurnal. 2023. № 3. S. 127-133. DOI: 10.21440/0536-1028-2023-3-127-133.
  2. Bersenev G.P., Kutuev V.A. Itogi IX nauchno-prakticheskoj kon-ferencii «Tekhnologiya i bezopasnost' burovzryvnyh rabot na otkrytyh i podzemnyh razrabotkah Urala» // Gornaya promyshlennost'. 2023. № 2. S. 46-48. DOI: 10.30686/1609-9192-2023-2-46-48.
  3. Tekhnologiya i bezopasnost' vzryvnyh rabot: mater. nauch.-proizvodstv. seminarov i konf. po vzryvnym rabotam - 2022 / In-t gorno-go dela; otv. red. G.P. Bersenev. Ekaterinburg: «Al'fa Print», 2023. 364 s.
  4. Krapivina I.S., Bersenev G.P. Metodika effektivnogo provede-niya burovzryvnym sposobom stroitel'nyh gornyh vyrabotok v stesnen-nyh usloviyah / OOO «NPP «Vzryvtekhnologiya», Associaciya «Vzryvniki Urala». Ekaterinburg: «Sonet», 2022. 80 s.
  5. Kotyashev A.A. Vklad Instituta gornogo dela v razvitie nauki i gornogo proizvodstva v period perestrojki (1985-1991) // Tekhnologiya i bezopasnost' vzryvnyh rabot: mater. nauch.-proizvodstv. seminarov i konf. po vzryvnym rabotam - 2022 / In-t gornogo dela; otv. red. G. P. Bersenev. Ekaterinburg: «Al'fa Print», 2023. 39-53 s.
  6. Bersenev G.P., ZHarikov S.N., Regotunov A.S., Kutuev V.A. Re-zul'taty issledovaniya tekhnologicheskogo razvitiya burovzryvnyh rabot na kar'erah Ural'skogo regiona // Problemy nedropol'zovaniya. 2022. № 3(34). S. 43-54. DOI: 10.25635/2313-1586.2022.03.043.
  7. Regotunov A.S., Men'shikov P.V., ZHarikov S.N., Kutuev V.A. Sovremennye tekhnicheskie resheniya dlya adaptacii parametrov vzryvnogo razrusheniya gornyh porod na kar'erah // Problemy nedropol'zovaniya. 2022. № 3(34). S. 114-127. DOI: 10.25635/2313-1586.2022.03.114.
  8. EVRAZ KGOK. URL: https://www.evraz.com/ru/company/assets/evraz-kgok (data obrashcheniya: 28.06.2023).
  9. Predpriyatie «Promtekhvzryv». URL: http://ptv-ural.ru/ (data obra-shcheniya: 28.06.2023).
  10. Galaj B. F. Uplotnenie prosadochnyh gruntov glubinnymi vzryvami / Minobrnauki Rossii, Severo-Kavkazskij federal'nyj uni-versitet (SKFU). Stavropol': SKFU, 2015. 237 s.
  11. OOO NPO «Alzamir». URL: https://alzamir.ru/ (data obrashcheniya: 28.06.2023).
  12. RFYAC-VNIITF. URL: http://vniitf.ru/ (data obrashcheniya: 28.06.2023).
  13. Institut gornogo dela UrO RAN. URL: https://igduran.ru/ (data obrashcheniya: 28.06.2023).
  14. OOO «Protol». URL: https://protol.ru/ (data obrashcheniya: 28.06.2023).
  15. Ural'skij geologicheskij muzej. URL: https://mkugmk.ru/ru/ (da-ta obrashcheniya: 28.06.2023).
211-223
To the 75th Anniversary of the birth of the Doctor of Technical Sciences – Alexander Evgenievich Frantov224-225

 << Back
User login
Name:

Password:
Lost password?Register
Password retrival
User name or e-mail:


Enter code:
 
New user registration

User name:

Password:

Repeat password:

Enter code:
Organization name:

INN/KPP:

Juridical address:

Post address:

Contact phone number:

Contact person:

E-mail:
Full name:

Contact phone number:

Post address:

E-mail:
 
Access to electronic version

Texts of the articles are available to registered users who have paid for access to the selected journal issue.