"Explosion technology"— scientific and technical journal

Journal was founded in 1922 by a group of engineers. In Russia and the CIS "Explosion technology" is the only one peer-reviewed specialized periodical in the field of blasting.

Issue 126/83 (2020)

Theory and practice of blasting work

Brief view
 Article title Pages  
Title and imprint 

Section 1. Researches of the rocks destruction by explosion
UDC 622.732
I.F. Zharikov, Senior researcher, doctor of technical sciences
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS, Moscow, Russia)

About the free work of the process breaking

Keywords:charge design, explosive, distribution of granulometric composition, methods of representation of granulometric composition, voltage wave, well charge, air span

The possibility of choosing a rational method of managing the quality of the blasted mountain mass, which meets the requirements for the quality of the granulometric composition by the loading and transport technological necessary to minimize the expenditure of the enterprise's budget. The choice is based on the patterns of analysis of the quality of the blasted mountain mass, presented in analytical form and the results of the study of the process of fragmentation of rocks in the influence of different dynamic loads, determined well-on-well charges and explosive conditions.

Bibliographic list:
  1. Kuznetsov V.M. Mathematical models of explosive business / Science, 1977, p. 253.
  2. Zharikov I.F. Efficiency of destruction of rocks by charges of various structures // Explosive case, M. Nedra, 1996, No 96/53, p. 25-33.
  3. Zharikov I.F. Effect of Charge Design on granulometric composition of the exploded mountain mass / Engineering Physics, 2019, No 8, p. 41-49.
  4. Rodionov V.N., Sizov I.A., Tsvetkov V.M. Basics of Geomechanics, M. Nedra, 1986, p. 299.
  5. Zharikov I.F., Marchenko L.N., Rodionov V.N. Research of the spread of waves of tensions in a solid two-dimensional environment / FTPRPI, 1986, No. 6, p. 62-65.
5-15
UDC 622.271
Zharikov I.F., Senior researcher, doctor of technical sciences,
Seinov N.P., active member of AGN
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS, Moscow, Russia)

About the preparation sveby smyrofor mass for schema cycle-potry technology

Keywords:cyclical technology, conveyor transport, explosion, equipment performance, granulometric composition, piecework, economic and mathematical model

The results of determining the conditions of effective use of cyclical and flowing technology in crushing hard-to-explode surface rocks of a large-block structure are considered. Studies have been carried out to determine the optimal granulometric composition of the exploded mountain mass and the largeness of pieces of rock for transporting conveyor belts under various mining conditions and schemes cyclical-flowing technology. The criterion for assessing the granulometric composition of the exploded mountain mass is the rate of loosening it in the excavator bucket, which is a function of the percentage of different fractions and the most fully reflective piece of the blown up breed.

Bibliographic list:
  1. Suprun V.I., Artemyev V.B., Opanasenko P.I. Complexes of cyclical and flow technology for career development / Open mining, 2018, Volume 4, book 10, p. 232.
  2. Trubetskaya K.N., Jarikov I.F., Shenderov A.I. Improving cyclical and flow technology in the complex development of deposits / Marksheideria and subsoil use, 2014, No. 3, p. 22-31
  3. Turchaninov I.A., Iofis M.A., Kasparyan E.V. Basics of Rock Mechanics, L. Nedra, 1989, p. 488.
  4. Mentges Ulrich. Practice of semi-stationary crushing squishing squishing slips / Mining, 2005, No. 2, p. 28-31.
16-27
UDC 622.235
G.V. Shubin, Doctor Engineering sciences, dotsent
B.N. Zarovnyaev, Doctor of Engineeringsciences, professor
S.P. Alkov, senior teacher
F.F. Emelianov, Engineer
A.V. Koriyakin, Engineer, head of blasting branch of joint-stock company «Anabar diamonds»
(North-Eastern Federal University, mining institute)

Analysis of granulometric composition of explosed overburden at the «Zarya» open pit, Aikhal MPP

Keywords:overburden, rock breakup, photoplanimetric method, particle size distribution, granulometric composition, average size of a piece

The particle size distribution of blasted overburden rock formations under the conditions of the Zarya diamond pipe quarry of the Aikhal MPP was studied using the photoplanimetric method. The percentage composition of pieces of rock in a given interval by size classes was established. The average sizes of pieces of blasted rock are determined from individual processed fragments of digital photographs.

Bibliographic list:
  1. Shubin G.V., Zarovnjaev B.N., Sorokin V.S., Hon V.I. Issledovanie kuskovatosti vzorvannoj rudy na kar'erah Udachninskogo GOKa. // Gornyj informacionno-analiticheskij bjulleten'. – 2010. – №8. – 234-238 pp.
  2. Shubin G.V., Zarovnjaev B.N., Sorokin V.S., Hon V.I. Sovershenstvovanie tehnologii vedenija burovzryvnyh rabot na almaznyh kar'erah Jakutii. Jakutsk: Izdatel'skij dom SVFU, 2012. – 140 p.
  3. Shubin G.V., Zarovnjaev B.N.,Al'kov S.P., Dugarcyrenov A.V. Podgotovka gornyh porod k vyemke vzryvom. Jakutsk: Izdatel'skij dom SVFU, 2018. – 230 p.
  4. Rakishev B.R., Shampikova A.H., Kazangapov A.E. Razmeshhenie zon melkogo, srednego i krupnogo droblenija v razvale porod. Vzryvnoe delo №114/71. – M.: IPKON RAN, 2015. 45-53 pp.
  5. Rakishev B.R., Rakisheva Z.B., Aujezova A.M., Kalieva A.P. Komp'juternaja programma opredelenija granulometricheskogo sostava vzorvannyh porod na kar'erah. Vzryvnoe delo №114/71. – M.: IPKON RAN, 2015. 83-96 pp.
  6. Maerz N. H., Palangio T. C., WipFrag image based granulometry system. Proceedings of the FRAGBLAST5 Workshop on Measurement of Blast Fragmentation, Canada, 1996.
  7. Paramonov V.A., Ishejskij I.A., Kovalevskij V.N. K voprosu ocenki granulometricheskogo sostava iz razlichnyh zon razrushenija pri vzryve zarjada VV. Vzryvnoe delo. Vypusk №113/70. – M.: IPKON RAN, 2015.108-117 pp.
  8. Galushko F.I., Komjagin A.O., Musatov I.N. Upravlenie kachestvom vzryvnoj podgotovki gornoj massy na osnove optimizacii parametrov BVR.Vzryvnoe delo. Vypusk №118/75. – M.: IPKON RAN, 2017. 140-152 pp.
  9. Metodika fotoplanimetricheskih zamerov frakcionnogo sostava gornyh porod. JaKUTNIPROALMAZ, Mirnyj, 2004.
28-37

Section 2. State and improvement of explosives, devices and blasting agents
UDC 531.663
A.V. Dubovik, Doctor of Phys.-Mathem. Sciences, Leading researcher
(Federal Researching Center Chemical Physics of Russian Academy of Sciences)

Relationship of sensitivity parameters with the rate of thermal decomposition of explosives in hot spots of explosive charge at the impact

Keywords:explosive, impact, fracture, chemical reaction, the rate constant of the reaction, the explosion

Mathematical model of mechanical destruction of a solid explosive charge at the impact on a drop-weight machine is presented. The model is used to establish an analytical relationship between the sensitivity parameters of explosive and the rate constant of thermal decomposition of explosive in hot spots of explosive charge at impact. The model is used also to explain the physical meaning of the critical thickness (mass) of the explosive charge. The table shows the results of calculations of thermal decomposition constants and energy parameters of impact initiation for some standard explosives and oxidants.

Bibliographic list:
  1. Baum F.A., Stanjukovich K.P., Shehter B.I. Fizika vzryva. – M.: Fizmatgiz, 1959. –800 s.
  2. Andreev K.K., Beljaev A.F. Teorija vzryvchatyh veshhestv. – M.: Oborongiz, 1960. –596 s.
  3. Fizika vzryva / Pod red. L.P.Orlenko. – M.: Fizmatlit, 2004. T.1. – 832 s.
  4. Afanas'ev G.T., Bobolev V.K. Iniciirovanie tverdyh vzryvchatyh veshhestv udarom. – M.: Nauka, 1968. – 176 s.
  5. Dubovik A.V. Chuvstvitel'nost' tverdyh vzryvchatyh sistem k udar. – M.: RHTU im. D.I.Mendeleeva, 2011. – 276 s.
  6. Bouden F., Ioffe A. Vozbuzhdenie i razvitie vzryva v tverdyh i zhidkih vzryvchatyh veshhestvah / Per. s angl. – M.: Inlitizdat, 1950. – 120 s. (Bowden F.P., Yoffe A.D. Initiation and growth of explosion in solids and liquids.- Cambridge University Press, 1952. – 120 p.)
  7. Pepekin V.I., Makhov M.N., Lebedev Yu.A. Teploty vzryvchatykh prevrashchenij individual`nykh VV // Dokl. RAN, 1977. V.232, N 4. P. 852–855.
38-50
UDC 622.235.5
I.Yu. Maslov, candidate of technical sciences, chief engineer
S.A. Gorinov, doctor of technical sciences, scientific consultant
(LLC «Global Mining Explosive – Russia»)
S.A. Kozyrev, doctor of technical sciences, Headlaboratories of GoI
(KSC RAS)

To the question of calculation of specific heat of explosion of emulsion explosives and granemites

Keywords:specific heat of explosion, chemical composition of emulsifier and hydrocarbon fuel, granemites

In this work, the gross formulas and heats of formation of hydrocarbon fuels and emulsifiers used in the manufacture of emulsion explosives (EE) are specified.Based on the results obtained, a method for calculating the specific heat of explosion of explosive substances is proposed, taking into account both the chemical composition of the oxidative phase of explosive substances and the chemical composition of the fuel phase, which in the calculations is a mixture of hydrocarbon fuel and emulsifier.
For purely pure emulsion explosives, it is not possible to create balanced in terms of «fuel-oxidizer» compositions with a rather fine dispersed oxidizing phase due to significant mechanical and physico-chemical difficulties of the emulsification process. Therefore, as a rule, bulk emulsion explosives with a very unbalanced composition and, accordingly, low values of the specific heat of the explosion are made.
It is shown that the specific heat of explosion of balanced granemites can reach values characteristic of trotyl-containing explosives. However, this is possible only when coordinating the processes of explosive decomposition of explosive substances and ammonium nitrate (AN-F), which are part of granemite.The work is of practical interest for developers and manufacturers of emulsion explosives, as well as manufacturers of blasting in mining enterprises.

Bibliographic list:
  1. Baum F.A. Physics of explosion / F. A. Baum, K. P. Stanyukovich and B.I. Shekhter. – Moscow: State ed. Phys. – Mat. lit-ry. – 1959. – 800 p.
  2. Xuguang V. Emulsion explosives. – M. – Krasnoarmeysk. – 2002. – 380 p.
  3. Manual for the application of SP 12.13130.2009 «Definition of categories of premises, buildings and outdoor installations for explosion and fire hazard» / I. M. Smolin, N. L. Poletaev, D. M. Gordienko, etc. – M.: FSU VNIIPO of MES of Russia. – 2009. – 91 p.
  4. Simonov P.S. Analysis of explosive characteristics and conditions of application of emulsion explosives / P.S. Simonov, G.N. Terpeyev / / Actual problems of modern science, technology and education. – 2019. – T. 10. – No. 1. – Pp. 8-12.
  5. GOST 305-2013. Interstate standard. Diesel fuel. Technical conditions.
  6. GOST 20799-88. Industrial oils. Technical conditions.
  7. Sukhanov V.P. Processing of petroleum: a Tutorial. – Moscow: Higher school. – 1979. – 335 p.
  8. Physico-chemical and flammable properties of organic chemical compounds: (reference: [in 2 V.]) / G. T. Zemsky. – M.: FGU VNIIPO of MES of Russia. – 2009.
  9. Handbook of inorganic chemistry. Constants of inorganic substances / R.A. lidin, L.L. Andreeva, V.A. Molochko. – M.: Chemistry. – 1987. – 320 p.
  10. Kolganov E.V. Emulsion industrial explosives. 1st book (Compositions and properties) / E.V. Kolganov, V.A. Sosnin. – Dzerzhinsk, Nizhny Novgorod region: publishing house of the state Research Institute «Crystal». – 2009. – 592 p.
  11. Avakian G.A. Calculation of energy and explosive characteristics of Explosives. Textbook. – M.: publishing house. VIA im. F. E. Dzerzhinsky. – 1964. – 106 p.
  12. Sergeev Yu.А. Urea: properties, manufacture, applications / Y. A. Sergeev, N. M. Kuznetsov, A. V. Chirkov. – Nizhny Novgorod: Quartz. – 2015. – 544 p.
  13. Stall D. Chemical thermodynamics of organic compounds / D. Stall, E. Westram, G. Zinke. – M.: Mir. – 1971. – 806 p.
  14. Matorin A.S. Water-containing explosives of local preparation / A.S. Matorin, V. M. Pavlyutenkov. – Yekaterinburg: IGD Uro RAS, 2004. – 194 p.
  15. Gorinov S.A. Theoretical estimation of detonation parameters of granemites / S. A. Gorinov / / Gorny information and analytical Bulletin. – 2010. – N 8. – Pp. 121-130.
51-67
UDC 622.235.3
I.Yu. Maslov, Ph.D., Chief Engineer
S.A. Gorinov, Doctor of Technical Sciences, Scientific Consultant
(LLC Global Mining Explosive-Russia)

Questions of experimental substantiation of safe use of ammonium-nitrate explosives in sulfide-containing rocks

Keywords:ammonium nitrate explosives, sulfide-containing rocks, chemical compatibility, iron (II) and (III) sulfates

The paper proposes a chemical model of interaction of ammonium nitrate explosives (ANE) with pyrite rocks, which allows describing the development of the low-temperature phase of this process and its transition to the high-temperature phase. The analysis of the presented model of interaction of pyrite and ammonium nitrate shows that its intensity significantly depends on the presence of sulfuric water and iron (II), (III) sulfates in the system.
Consideration of many practically important issues of improving the safety and reliability of blasting operations when using ANE for the destruction of sulfide ores requires a more detailed consideration of the participation of iron sulfates in the interaction of ANE and pyrite ores. With a small amount of moisture, the heat release during the reaction of ammonium nitrate, pyrite, and iron (III) sulfate is completely insufficient for the progressive heating of the interacting masses. In the presence of moisture, the heat generated by the oxidation of pyrite in this reaction becomes comparable to the heat generated by the combustion of the same amount of brown coal. This is extremely dangerous, since under certain conditions it can lead to a critical heating of the interacting masses of pyrite and ammonium nitrate.
To test the position on the effect of the presence of iron (II) and iron (III) sulfates in the reaction mixture of pyrite and ammonium nitrate, laboratory experiments were conducted, which confirmed the results of theoretical studies.Thus, it is theoretically shown and experimentally confirmed that pyrite ore reacts more actively with ammonium nitrate in the presence of iron sulfates in mine waters. This circumstance necessitates that in determining the chemical compatibility of ANE and sulfide-containing rocks, in addition to determining the indicators specified in the "Manual for the prevention of spontaneous combustion and explosions of explosives based on ammonium nitrate in the production of explosive works in copper-crusted ores", the content of iron sulfates in mine waters should also be evaluated.

Bibliographic list:
  1. Guidelines for the prevention of spontaneous fires and explosions of explosives based on ammonium nitrate in the production of blasting in copper ores. – Moscow: Ministry of metallurgy of the USSR, 1991-7 p.
  2. Ainbinder G.I. Investigation of the chemical compatibility of Grammotol T-20 and packaging and of Grammonit TMM with the host rocks and downhole waters of the underground mine of OJSC «Gaysky GOK»/ G.I.Ainbinder, M.D. Demchishin, D.S. Pecorina, M.A. Semakin, N.L. Poletaev, V.A. Sosnin // Labour Safety in Industry. – 2016. – Pp. 47-52.
  3. Australian Explosives Industry and Safety Group Inc. Code of Practice. Elevated Temperature and Reactive Ground. — Ed. 3. — AEISG, June, 2012.
  4. Chanturia, V.A. Electrochemistry of sulfides: theory and practice of flotation V. A. Chanturia, V. E. Vigdergauz. – Moscow: Nauka, 1993. – 206 p.
  5. Mitrofanov S.I. Selective flotation /S. I. Mitrofanov. – M.: Nedra, 1968. – 584 p.
  6. Good B.H. The oxidation of sulfide minerals in the Sullivan Mine/ B.H. Good// CIM Bull. 1977. – № 70 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.). – PP. 83-88.
  7. Rosenblum F. The key role of sample weathering in self-heating testing methodologies for sulphides. Review of self-heating testing methodologies /
  8. Rosenblum// XXVII-th Internation Mineral Processing Congress, 20-24 October 2014, Santiago, Cheile.
  9. Rosenblum F. Evaluation and control of self-heating in sulphide concentrates/ F. Rosenblum, J.E. Nesset, P. Spira// CIM Bulletin. – 2001. – PP. 94, 92-99.
  10. Rosenblum F. Review of self-heading testing methodologies /F. Rosenblum, J.E. Nesset, J.A. Finch// 46th Annual Canadian Mineral Processors Operating Conference, Ottawa, Ontario, January 21-23, 2014.
  11. Sarah J. Sulphide Self-Heating: Moisture Content and Sulphur Formation: PhD diss., McGill University Montreal, Canada July 2012. – 104 p.
  12. Kolganov E.V. Commercial Emulsion explosives. Book 1 (Compositions and properties) / E.V. Kolganov, V.A. Sosnin. – Dzerzhinsk, Nizhny Novgorod region: publishing house "Crystal". – 2009. – 592 p
  13. Kovalenko I.L. Inhibition of pyrite interaction with ammonium-nitrate explosives / I.L. Kovalenko, V.P. Kuprin / / Modern resource-energy-saving technologies of mining production. – 2013(11). – No. 1. – P. 84-91.
  14. Xu Z.X. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite / Z.X. Xu, Q. Wang, X.Q. Fu // Journal of Hazardous Materials. – 2015. – № 1. – V. 300. – Pр. 702–710.
  15. Zhixiang XU Influence of Iron Ion on Thermal Behavior of Ammonium Nitrate and Emulsion Explosives/ XU Zhixiang, LIU Dabin, HU Yiting, YE Zhiwen, W. Yanan // Central European Journal of Energetic Materials, 2010. – № 7(1). – Рр. 77-93.
  16. Adamov E.V.Collection of lectures on the course «Biotechnological processes in metallurgy» /E. V. Adamov, E. Abdurakhmanov// Navoi: State mining Institute, 2011. – 142 p.
  17. Sobolev A.E. Kinetics of pyrite and sphalerite dissolution in the presence of oxidants //Thesis for Candidate of Chemical Sciences/ Sobolev, Aleksandr Evgenevich. – Tver, 2004. – 280 p.
  18. Wiersma C.L. Rates of reaction of pyrite and marcasite with ferric iron at pH 2/ C.L. Wiersma, J.D. Rimstidt // Geochim. Cosmochim. Acta. – Vol. 48. – 1984. – Pp. 85- 92.
  19. McKibben M.A. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures / M.A. McKibben, H.L. Barnes // Geochim. Cosmochim. Acta. – Vol. 50.-1986.-Pp. 1509-1520.
  20. Nordstrom D.K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals // Acid sulfate weathering / J.A. Kittrick, D.S. Fanning, L.R. Hossner (eds.): SSSA Special Publ. Number 10. – Madison, WI: Soil Scientific Society of America, 1982. – Chapter 3. – Pp. 37-56.
  21. Singer P.C. Acid mine drainage: The rate-determining step / P.C. Singer, W. Stumm // Science. – Vol. 167.- 1970.- Pp. 1121-1123.
  22. Bailey L.K. Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism/ L.K.Bailey, E. Peters// Can. Metall. Q. — Vol. 15. – 1976. – Pp. 333-344.
  23. Reedy В.J. A vibrational spectroscopic 18 O tracer study of pyrite oxidation /B.J. Reedy, J.K. Beattie, R.T. Lowson// Geochim. Cosmochim. Acta. – Vol. 55. — 1991.-Pp. 1609-1614.
  24. Taylor B.E. Oxygen and sulfur compositions of sulfate in acid mine drainage: Evidence for oxidation mechanisms / B.E.Taylor, M.C.Wheeler, D.K. Nordstrom // Nature.-Vol. 308.-1984.-Pp. 538-541.
  25. Taylor B.E. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite / B.E.Taylor, M.C.Wheeler, D.K. Nordstrom // Geochim. Cosmochim. Acta. – Vol. 48. – 1984. – Pp. 2669-2678.
68-84
UDC 622.235.5
А.A. Sysoev, Professor, Doctor of Technical Sciences
(KuzSTU named after T.F. Gorbachev, Kemerovo, Russia)
S.A. Kondratyev, Chief Executive Officer
(JSC «NMZ «Iskra», Novosibirsk, Russia)
I.B. Katanov, Doctor of Technical Sciences,
(KuzSTU named after T.F. Gorbachev, Kemerovo, Russia)

Comparative assessment of pyrotechnic and electronic detonator caps based on probabilistic models of the initiation system of the downhole charge

Keywords:mass explosion, electronic means of initiation, seismic impact, seismogram, displacement velocity

The article presents a comparative assessment of pyrotechnic and electronic downholecadetonator caps in combination with various surface delay connectors on the basis of a probabilistic model of initiation of the downhole charge system. The maximum number of charges in the group within the interval of 20 ms and the coefficient of variation of the explosive mass in these groups were accepted as criteria for comparing the variants. The possibility of using the probabilistic method to predict the distribution of the total mass of explosive at the full time of the explosion was previously shown by comparing seismograms of displacement velocities in experimental explosions with the calculated histogram of the distribution of the total mass of explosives at the intervals of initiation. The use of downhole detonator caps with electronic delay in almost all combinations of surface delays provides a decrease in the maximum number of charges in the group and a more uniform distribution of groups over time.

Bibliographic list:
  1. Kondratyev, S.A. Modern means of initiation of JSC «NMZ «Iskra». S.A. Kondratyev, S.A. Pozdnyakov, A.S. Ivanov, K.A. Vandakurov // Blasting. –2019. –No. 123/80. –Pp. 136–144.
  2. Peters, K.I. Experience in reducing seismic impacts on the environment and population in the production of mass explosions in the branches of JSC «Kuzbassrazrezugol» / Bulletin of the national research center For industrial and environmental safety. –No. 3. –2018. – Pp. 81–87.
  3. Kokin S.V. Control of mass explosion parameters / Kokin S.V., Parkhomenko D.M., Berwin A.V. / / Blasting. –2019. No. 125/82. – Рр. 39–52.
  4. Grib N.N. Analysis of seismic effect from mass explosions in open pit «Neryungrinsky» / N.N. Grib, A.Yu.Pazynich et al. // Modern problems of science and education. – 2010. – No.1. – Pp.71–76.
  5. Onika S.G. Modern state of methods for prediction of seismic explosions in open-pit mines V.S. Voitenko, F.G. Khalyavkin/ / Mining mechanics and mechanical engineering – Minsk. –No. 1, – 2012. – Pp. 28–33.
  6. Goncharov A.I. Seismic impact of explosions in mines and quarries / A.I. Goncharov, V.I. Kulikov, A.A. Eremenko / / ISSN 0135-3500. Notes of the Mining Institute. – Vol. 171, – 2007. Pp. 175–180.
  7. Novinkov A.G. Experience in managing seismic safety of mass explosions / A. G. Novikov, S. I. Protasov, P. A. Samusev / / Bulletin of the national research center For industrial and environmental safety. – Vol. 3. – 2019. Pp. 45–53.
  8. Belyaev A.G. Experience of «Azot-Chernigovets» LLC: application of electronic blasting systems "DAVEYTRONIC" at mining enterprises. / A.G. Belyaev, M. F.Nabiullin – Coal – No. 10. – 2013. Pp. 4–10.
  9. Sadovsky M.A. The Simplest methods of determining the seismic hazard of mass explosions / M.A. Sadovsky. – M.-L.: USSR Academy of Sciences, 1946. – 47 p.
  10. Sysoev A.A. Analysis of systems for initiating downhole charges in open pits// Bulletin of higher educational institutions. Mining Journal. 2016. No. 4. Pр. 60–67.
  11. Sysoev A.A. Experimental-industrial verification of probabilistic model of short-delayed initiation of the system of borehole charges A. A. Sysoev, I.B. Katanov, S.A. Kondratyev. // Blasting. –2019. No. 125/82–Рр. 5–16.
85-98
UDC 662.235
V.A. Sosnin, doctor of technical Sciences. Sciences, head of the Department of industrial explosives
Morozov K.E., head of the laboratory of the Department of industrial explosives
(JSC «GosNII «Kristall», Russia, Dzerzhinsk)
S.V. Kovalevich, kand. Techn. Sciences, head of the sector of destruction of rocks
(Yakutniproalmaz, AK ALROSA, Russia, Mirny)
R.Z. Gilmanov, doctor of chemical. Sciences, Professor, head the Department GTASA
(FGBOU VPO «Kazan national research technological University» (Russia, Kazan g.)

Development of technology for the use of emulsion explosives for blasting wells in the contour row at the off-site works of the open pit mining and processing complex AK Alrosa

Keywords:contour series, slope work, kinetics, stability

This paper presents the results of a study on the development of a formulation and technology for the manufacture of emulsion explosives, field tests for off-stream works in the creation of a shielding gap.Studies have confirmed the suitability of the compositions based on poremite 1A for blasting wells in the contour row at the lateral works of the Nyurbinsky mine.

Bibliographic list:
  1. Popov V.I., Nesmeyanov B.V. Surveying et Subsoil uti. Acta, 2001. – №1. – P. 175.
  2. Kolganov E.V., Sosnin V.A. Emulsion commercial explosives productio. – 1 liber (Compositiones et proprietates), 2009. – 592 sec.
  3. Kolganov E.V., Sosnin V.A. Emulsion commercial explosives productio. – 2 libro (Technology et securitatem), 2009. – 336 p.
99-112

Section 3. Technology of blasting in the mining of solid minerals
UDC 622.831:550.543
V.I. Lyashenko, Cand.Techn.sciences'., senior researcher
(State enterprise «Ukrnipiipromtechnologies», Ukraine)
V.I. Golik, doctor of technical Sciences. Professor of the Department «Development of mineral deposits»
V.I. Komashchenko, Dr. tech. Professor of the Department «Development of mineral deposits»
(North Caucasus state technological University, Ukraine)
R.A. Rakhmanov, research associate, PhD. Techn. Sciences,
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS, Moscow, Russia)
The work was attended by Yu.Y. Savelyev, A.G. Nedelsky, A.H. Dudchenko, P.T. Kruk, A.A. Tkachenko, V.Z. Dyatchin, A.G. Skotarenko, A.I. Podoprigora and others

Development of technologies and technical means for drilling and blasting of rock ores in chamber systems with a bookmark

Keywords:chamber system, drilling and blasting operations, technology and technical means, geomechanics, seismics, safety

The main scientific and practical results of the development of technologies and technical tools for drilling and blasting of rock ores in chamber systems with a bookmark are given, taking into account the required granularity of the recaptured ore (output of oversized  5% and sortable classes of 60% or more), the design of the chamber walls in the design contours and reducing the impact of the seismic action of the explosion on underground and surface protected objects. Methods of complex generalization, analysis and evaluation of practical experience and scientific achievements in the field of drilling and explosive destruction of solid media, mechanics and seismics of solid media, mathematical statistics, as well as research methods of wave processes using standard and new methods of leading specialists of developed mining countries of the world with the participation of the authors are described. It is shown that the parameters of drilling and blasting operations at the ka-dimensional systems with the bookmark depend on the geological and mining conditions, ore deposits and is characterized by the consumption of EXPLOSIVES for blasting the ore between 1.4–1.8 kg/m3, the output of gauge about 10 І5% (with certified piece repulsed ore mass 400 mm), a specific consumption of EXPLOSIVES in secondary crushing of 0.10-0.50 kg/m3. .The technique of determining the parameters of the grid of drill holes for blasting rock ore chamber system with a bookmark depending on the time, power and energy characteristics of the process of destruction of rock massif and use of EXPLOSIVES, as well as factors taking into account the fracturing of the massif (varies from 0.95 to 1.1) ; the fortress of rocks on a scale of Professor M. M. Protodiakonov (varies from 12 to 18); the rapprochement of charges(varies from 1.0 to 1.3) and loading density in g/cm3 (varies from 0.8 for BB type grammonite 79/21; granulite as–4; as–4V; As–8; As-8V to 1.6 – for Ammonite rock No. 1, etc.). It is recommended that to reduce the intensity of rock mass vibrations after an explosion in an exploitable block to the level of acceptable parameters, protected underground and surface objects, it is necessary to apply the screening of seismic waves by slit formation, which reduces the seismic effect by 3-5 times (depending on the formed gap) to protected objects located normally to fan well charges.

Bibliographic list:
  1. Kelly B. Stress analysis for boreholes on department of defense lands in the western united states: a study in stress heterogeneity / Proceedings, third-Eighth Workshop on Geothermal Reservoir Engi-neering Stanford University. Stanford: Stanford University, 2013. Pp. 139-150.
  2. Polak C. International Symposium on 23-27 June 2014 Vienna, Austria Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues / International Atomic Energy Agency. Vienna, 2014. Pp. 8-9. URL: http://www-pub.iaea.org/iaeameetings/46085/ (accessed: 19.08.2016).
  3. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste / Marketing and Sales Unit, Publishing Section International Atomic Energy Agency. Vienna, 2014. Pp. 246. URL: http://www.iaea.org/books (date accessed: 19.08.2016).
  4. Reiter, K., Heidbach O.: 3—D geomechanical—numerical model of the contemporary crustal stress state in the Alberta Basin (Canada) // Solid Earth. 2014. No. 5. Pp. 1123-1149.
  5. Safonov O.P., Shkreba O.P. Probabilistic method for estimating the seismic effect of industrial explosions. – Moscow: Nedra, 1970. – 56 p.
  6. Shashurin S.P., Plaksa N.V., Lebedev A.P. Development of powerful ore deposits by systems with single-stage excavation. – Moscow: Nedra, 1971. – 201 p.
  7. Mosinets V.N. Crushing and seismic effect of explosion in rocks. – Moscow: Nedra, 1976. — 271 p.
  8. Tseytlin Y.I., Smoliy N.I. Seismic and air shock waves from industrial explosions. – Moscow: Nedra, 1981. – 192 PP.
  9. Bogatsky V.F., Fridman A.G. Protection of structures and the environment from the harmful effects of industrial explosions. – Moscow: Nedra, 1982. – 162 PP.
  10. Mosinets V.N., Abramov A.V. Destruction of fractured and disturbed rocks. – Moscow: Nedra, 1982. — 248 p.
  11. Sadovsky M.A. Geophysics and physics of explosion. Moscow: Nedra, 1997. – 334 p.
  12. Khomenko O., Tsendjav L., Kononenko M., Janchiv B. Nuclear-and-fuel power industry of Ukraine: production, science, education / / Mining of Mineral Deposits, 2017. No. 11(4), Pp. 86— 95. DOI: 10.15407/mining11. 04. 086.
  13. Sleptsov M.N., Azimov R. sh., Mosinets V.N. Underground development of deposits of non-ferrous and rare metals. – Moscow: Nedra, 1986. — 206 p.
  14. Khomenko O., Kononenko M., Danylchenko M. Modeling of bearing massive condition during chamber mining of ore deposits / / Mining of Mineral Deposits, 2016. No 10(2), Pp. 40— 47. DOI: 10.15407/mining10. 02. 040.
  15. Mining and processing of uranium ores in Ukraine. Monograph / Under the General editorship of A. P. Chernov. – Kiev: ADEF-Ukraine, 2001. — 238 p.
  16. DSTU 4704:2008. The holding of promislovih wybuchu. Normi seismo BEZPEKA. Vzamin DSTU-P4704:2006. Introduction. 01.01.2009 / / Derzhstandart Of Ukraine. 2009.- 10s.
  17. Zhanchiv B., Rudakov D., Khomenko O., Tsendzhav L. Substance of mining parameters of Mongolia uranium deposits / / Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2013. No 4, Pp. 10-18.
  18. Savelyev Yu.Y., Nedelsky A.G., Kruk P.T., Dudchenko A.Kh., Tkachenko A.A., and others. Organization of monitoring of the seismic effect of an explosion during mining of ore deposits under urban development. Part 2 // Naukovyi Visnyk NGU. – 2004. – No. 1. – Pp. 5-7.
  19. Kutuzov B.N., Belin V.A. Design and organization of blasting operations. – Moscow: Moscow state University, 2011. — 410 p.
  20. Sivenkov V. I., Ilyakhin S. V., Maslov I. Yu. Emulsion explosives and non-electrical initiation systems. – Moscow: Shield-M, 2013. – 320 p.
  21. Trubetskoy K.N. Development of resource-saving and resource-reproducing geotechnologies for complex development of mineral deposits. – Moscow: ipcon RAS, 2014. – 196 p.
  22. Jonson D. Controlled shock waves and vibrations during large and intensive blasting operations under Stockholm city / Workshop on Tunneling by Drilling and Blasting, hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24-25 November, 2012. Pp. 49-58.
  23. Monalas F.I., Arusu T. Blasting works in urban area A Singapore case study / Workshop on Tun-neling by Drilling and Blasting hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24-25 November, 2012, Pp. 23-30.
  24. Gupta I.D., Trapathy G.R. Comparison of construction and mining blast with specific reference to structural safety / / Indian Mining and Engineering Journal. 2013. Vol. 54. No. 4. Pp. 13-17.
  25. Lyashenko V., Vorob'ev A., Nebohin V., Vorob'ev K. Published by the National Mining University on behalf of Mining of Mineral Deposits. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (2018) / / Mining of Mineral Deposits, 12(1), 95-102 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
  26. Rakishev B.R., Rakisheva Z.B., Auezova A.M. Rate and time of expansion of the cylindrical blast cavity in the array of rocks // the Explosive case. – 2014. – No. 111/68. – Pp. 3-17.
  27. Ilyakhin S.V., Norov A.Yu., Yakshibaev T.M. Determination of the radius of zones of rock mass fracture during a camouflage explosion. – 2016. – No. 116/73. – Pp. 29-36.
  28. Komashchenko V.I. Development of explosive technology that reduces the harmful impact on the environment. Izvestiya Tula state University. earth science. 2016. No. 1. Pp. 34-43.
  29. Lyashenko V.I., Golik V.I. Scientific and design and technological support for the development of uranium production. Achievements and tasks / / Mountain information and analytical Bulletin . -2017. – No. 7. – Pp. 137-152.
  30. Lyashenko V.I., Andreev B.N., Kucha P.M. Development of mining technologies for underground block leaching of metals from rock ores / / Mining information and analytical Bulletin. – 2018. – No. 3. – Pp. 46-60. DOI: 10.25018/0236-1493-2018-3-0-46-60.
  31. Golik V.I., Razorenov Yu.I., Lyashenko V.I. Conditions for leaching non-ferrous metals from off-balance sheet raw materials.Izvestiya Tomsk Polytechnic University. Engineering of georesources. – 2018. Vol. 329. – No. 6. – Pp. 6-16.
  32. Lyashenko V.I., Golik V.I., Komashchenko V.I. Improving the efficiency of drilling and blasting preparation of rock ores for underground block leaching of metals/ / Scientific and technical collection Explosive case. – 2018. – No. 120/77. – Pp. 147-168.
  33. Lyashenko V.I., Golik V.I., Komashchenko V.I., Nebogin V.Z. Improving the seismic safety of the development of rock deposits based on the use of new EXPLOSIVE charges/ / Scientific and technical collection Explosive case. – 2018. – No. 120/77. – Pp. 243-264.
  34. Lyashenko V.I., Golik V. I., Komashchenko V.I., Kislyy P.A., Rakhmanov R.A. Improving the seismic safety of underground mining of rock deposits based on the use of new means of initiating explosive charges. – 2019. – No. 122/79. – Pp. 154-179.
  35. Lyashenko V.I., Khomenko O.E., Kislyy P.A. Improving the seismic safety of underground mining of rock deposits based on the use of new charges of explosive substances / / Ferrous metallurgy. Bulletin of scientific, technical and economic information. 2019. Vol. 75. No. 8. Pp. 912-922. Doi: 10.32339/0135-5910-2019-8-912-922.
  36. Lyashenko V.I., Kislyy P.A., Rakhmanov R.A. Theory and practice of drilling and blasting preparation of ore mass for underground block leaching/ / Scientific and technical collection Explosive case. – 2019. – No. 124/81. – Pp. 126-151.
  37. Lyashenko V.I., Andreev B.N. Improving the efficiency of drilling and blasting preparation of ore mass for underground block leaching / / labor Safety in industry. — 2019. – No. 8. – Pp. 27-34. DOI: 10.24000/0409-2961-2019-8-27-34.
  38. Borovkov Yu.A., Yakshibaev T.M. Theoretical studies of changes in the radius of fracture zones in the ore pile of heap leaching by the explosion of a camouflage squamous EXPLOSIVE charge. Izvestiya vuzov. Mining journal. — 2019. – No. 5. – Pp. 30-36. DOI: 10.21440/0536-1028-2019-5-30-36.
  39. Lyashenko V.I., Khomenko O.E. Improving the efficiency of drilling and blasting of ore in a clamped environment / / Mining information and analytical Bulletin. – 2019. – No. 11. – Pp. 59-72. DOI: 10.25018/0236-1493-2019-11-0-59-72.
  40. Lyashenko V.I., Andreev B.N., Dudchenko A.H., Rakhmanov R.A. Improving the seismic safety of drilling and blasting preparation of ore mass for underground block leaching/ / Scientific and technical collection Explosive case. – 2020. – No. 126/83.
113-150
UDC 622.831:550.543
V.I. Lyashenko, PhD. tech. sciences', senior researcher,
A.X.Dudtchenko, Senior Researcher
(Ukrnipipromtehnologii, Ukraine)
B.N.Andreev, Head. of the department, doc. tech. Sciences
(Kryvyi Rih National University, Ukraine)
R.A. Rakhmanov, research fellow, Ph.D. in Engineering,
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS, Moscow, Russia)

Improving the seismic safety of drilling and blasting preparation of ore mass for underground block leaching

Keywords:ore deposits, complex structure, metal leaching, seismic safety, subsoil protection, efficiency

The main scientific and practical results of increasing the seismic safety of drilling and blasting the ore mass for PBW are given, taking into account the size of the average linear piece of the exploded ore mass in the clamped medium and the justification of its seismically safe parameters. It was found that the masses of charges should be evenly distributed over the deceleration steps, except for the first and last, and be 25-30% less than in the rest. The number of deceleration steps must be at least 3-4. The optimal level of the seismic wave process is achieved by short-blasting 10–12 stages of explosive charges. According to the results of instrumental measurements, the period of seismic fluctuations in the studied deposits is in the range of 25–100 ms. An assessment of the seismic effect of the explosion in the preparation of blocks for the PBB at the Michurinsky deposit to the surface and surface objects is given. Recommended diagrams for determining the permissible charge mass for one deceleration interval during blasting operations, as well as formulas for calculating the seismic safety mass of explosive charges in various deposits of the Michurinsky deposit and permissible distances at an array displacement rate of up to 0.8 cm / s. The efficiency of the WSP process, which achieved by intensification of explosive crushing by increasing the specific flow rate for breaking up to 2.9–3.3 kg / m3 for the Ingul mine of GP VostGOK, as well as the accumulation of rock mass in limited space with a low loosening coefficient (Кр = 1.2–1.25), especially in the lower part of the chamber.

Bibliographic list:
  1. Kelly B. Stress analysis for boreholes on department of defense lands in the western united states: a study in stress heterogeneity / Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University. Stanford: Stanford University, 2013. Pp. 139—150.
  2. Polak C. International Symposium on 23—27 June 2014 Vienna, Austria Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues / International Atomic Energy Agency. Vienna, 2014. Pp. 8—9. URL: http://www-pub.iaea.org/iaeameetings/46085/ (data obrashcheniya: 19.08.2016).
  3. Techno-economic Comparison of Geological Disposal of Sarbon Dioxide and Radioactive Waste / Marketing and Sales Unit, Publishing Section International Atomic Energy Agency. Vienna, 2014. Pp. 246. URL: http://www.iaea.org/books (data obrashcheniya: 19.08.2016).
  4. Reiter K., Heidbach O. 3—D geomechanical—numerical model of the contemporary crustal stress state in the Alberta Basin (Canada) // Solid Earth. 2014. No. 5. Pp. 1123—1149.
  5. Safonov O.P., SHkreba O.P. Veroyatnostnyj metod ocenki sejsmicheskogo effekta promyshlennyh vzryvov. — M.: Nedra, 1970. — 56 s.
  6. SHashurin S.P., Plaksa N.V., Lebedev A.P. Razrabotka moshchnyh rudnyh mestorozhdenij sistemami s odnostadijnoj vyemkoj. — M.: Nedra, 1971. — 201 s.
  7. Mosinec V.N. Drobyashchee i sejsmicheskoe dejstvie vzryva v gornyh porodah. — M.: Nedra, 1976. — 271 s.
  8. Cejtlin YA.I., Smolij N.I. Sejsmicheskie i udarnye vozdushnye volny promyshlennyh vzryvov. — M.: Nedra, 1981. —192 s.
  9. Bogackij V.F., Fridman A.G. Ohrana sooruzhenij i okruzhayushchej sredy ot vrednogo dejstviya promyshlennyh vzryvov. — M.: Nedra, 1982. —162 s.
  10. Mosinec V.N., Abramov A.V. Razrushenie treshchinovatyh i narushennyh porod. — M.: Nedra, 1982. — 248 s.
  11. Sadovskij M.A.Geofizika i fizika vzryva. M.: Nedra, 1997. – 334 s.
  12. Khomenko O., Tsendjav L., Kononenko M., Janchiv B. Nuclear-and-fuel power industry of Ukraine: production, science, education // Mining of Mineral Deposits, 2017. No 11(4), Pp. 86— 95. DOI: 10.15407/mining11.04.086.
  13. Slepcov M.N., Azimov R.SH., Mosinec V.N. Podzemnaya razrabotka mestorozhdenij cvetnyh i redkih metallov. — M.: Nedra, 1986. — 206 s.
  14. Khomenko O., Kononenko M., Danylchenko M. Modeling of bearing massif condition during chamber mining of ore deposits // Mining of Mineral Deposits, 2016. No 10(2), Pp. 40— 47. DOI: 10.15407/mining10.02.040.
  15. Dobycha i pererabotka uranovyh rud v Ukraine. Monografiya / Pod obshch. red. A.P. CHernova. — Kiev: ADEF—Ukraina, 2001. — 238 s.
  16. DSTU 4704:2008. Provedennya promislovih vibuhіv. Normi sejsmіchnoї bezpeki. Vzamіn DSTU-P4704:2006. Vved. 01.01.2009 // Derzhstandart Ukraїni. 2009.-10s.
  17. Zhanchiv B., Rudakov D., Khomenko O., Tsendzhav L. Substantiation of mining parameters of Mongolia uranium deposits // Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2013. No 4, Pp. 10—18.
  18. Savel'ev YU.YA., Nedel'skij A.G., Kruk P.T., Dudchenko A.H., Tkachenko A.A. i dr. Organizaciya monitoringa sejsmicheskogo dejstviya vzryva pri otrabotke rudnyh zalezhej pod gorodskoj zastrojkoj. CH. 2 // Naukovij vіsnik NGU. — 2004. — № 1. — S. 5—7.
  19. Kutuzov B.N., Belin V.A. Proektirovanie i organizaciya vzryvnyh rabot. — M.: MGGU, 2011. — 410 s.
  20. Sivenkov V.I., Ilyahin S.V., Maslov I.YU. Emul'sionnye vzryvchatye veshchestva i neelektricheskie sistemy iniciirovaniya. — M.: SHCHit-M, 2013. — 320 s.
  21. Trubeckoj K.N. Razvitie resursosberegayushchih i resursovosproizvodyashchih geotekhnologij kompleksnogo osvoeniya mestorozhdenij poleznyh iskopaemyh. — M.: IPKON RAN, 2014. — 196 s.
  22. Jonson D. Controlled shock waves and vibrations during large and intensive blasting operations under Stockholm city / Workshop on Tunneling by Drilling and Blasting hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012. Pp. 49—58.
  23. Monalas F.I., Arusu T. Blasting works in urban area A Singapore case study / Workshop on Tunneling by Drilling and Blasting hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012, Pp. 23—30.
  24. Gupta I.D., Trapathy G.R. Comparison of construction and mining blast with specific reference to structural safety // Indian Mining and Engineering Journal. 2013. Vol. 54. No. 4. Pp. 13—17.
  25. Lyashenko V., Vorob’ev A., Nebohin V., Vorob’ev K. Published by the National Mining University on behalf of Mining of Mineral Deposits. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (2018) // Mining of Mineral Deposits, 12(1), 95—102 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
  26. Rakishev B.R., Rakisheva Z.B., Auezova A.M. Skorosti i vremya rasshireniya cilind- richeskoj vzryvnoj polosti v massive porod // Vzryvnoe delo. — 2014. — № 111/68. — S. 3—17.
  27. Il'yahin S.V., Norov A.YU., YAkshibaev T.M. Opredelenie radiusa zon treshchinoobrazovaniya gornogo massiva pri kamufletnom vzryve // Vzryvnoe delo. — 2016. — № 116/73. — S. 29—36.
  28. Lyashenko V.I., Golik V.I. Nauchnoe i konstruktorsko–tekhnologicheskoe soprovozhdenie razvitiya uranovogo proizvodstva. Dostizheniya i zadachi//Gornyj informacionno–analiticheskij byulleten' . –2017. –№7. –S.137–152.
  29. Lyashenko V.I., Andreev B.N., Kucha P.M. Razvitie gornotekhnicheskih tekhnologij podzemnogo blochnogo vyshchelachivaniya metallov iz skal'nyh rud // Gornyj informacionno-analiticheskij byulleten'. — 2018. — № 3. — S. 46—60. DOI: 10.25018/0236-1493-2018-3-0-46-60.
  30. Golik V.I., Razorenov YU.I., Lyashenko V.I. Usloviya vyshchelachivaniya cvetnyh metallov iz zabalansovogo syr'ya//Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. – 2018. T. 329. – № 6. –S. 6–16.
  31. Lyashenko V.I., Golik V.I., Komashchenko V.I. Povyshenie effektivnosti burovzryvnoj podgotovki skal'nyh rud k podzemnomu blochnomu vyshchelachivaniyu metallov// Nauchno-tekhnicheskij sbornik Vzryvnoe delo. – 2018. – №120/77. – S. 147– 168.
  32. Lyashenko V. I., Golik V.I., Komashchenko V.I., Nebogin V.Z. Povyshenie sejsmicheskoj bezopasnosti razrabotki skal'nyh mestorozhdenij na osnove primeneniya novyh zaryadov VV//Nauchno-tekhnicheskij sbornik Vzryvnoe delo. – 2018. – №120/77. – S. 243– 264.
  33. Lyashenko V.I., Golik V.I., Komashchenko V.I., Kislyj P.A., Rahmanov R.A. Povyshenie sejsmicheskoj bezopasnosti podzemnoj razrabotki skal'nyh mestorozhdenij na osnove primeneniya novyh sredstv iniciirovaniya vzryvov zaryadov VV//Nauchno-tekhnicheskij sbornik Vzryvnoe delo. – 2019. – №122/79. – S. 154– 179.
  34. Lyashenko V.I., Homenko O. E., Kislyj P.A. Povyshenie sejsmicheskoj bezopasnosti podzemnoj razrabotki skal'nyh mestorozhdenij na osnove primeneniya novyh zaryadov vzryvchatyh veshchestv //CHernaya metallurgiya. Byulleten' nauchno-tekhnicheskoj i ekonomicheskoj informacii. 2019. T. 75. № 8. S. 912–922. Doi: 10.32339/0135-5910-2019-8-912–922.
  35. Lyashenko V.I., Kislyj P.A., Rahmanov R.A. Teoriya i praktika burovzryvnoj podgotovki rudnoj massy k podzemnomu blochnomu vyshchelachivaniyu//Nauchno-tekhnicheskij sbornik Vzryvnoe delo. – 2019. – №124/81. – S. .
  36. Lyashenko V.I., Andreev B.N. Povyshenie effektivnosti burovzryvnoj podgotovki rudnoj massy k podzemnomu blochnomu vyshchelachivaniyu // Bezopasnost' truda v promyshlennosti. — 2019. — № 8. — S. 27—34. DOI: 10.24000/0409-2961-2019-8-27-34.
  37. Borovkov YU.A., YAkshibaev T.M. Teoreticheskie issledovaniya izmeneniya radiusa zon treshchinoobrazovaniya v rudnom shtabele kuchnogo vyshchelachivaniya vzryvom kamufletnogo skvazhinnogo zaryada VV // Izvestiya vuzov. Gornyj zhurnal. — 2019. — № 5. — S. 30—36. DOI: 10.21440/0536-1028-2019-5-30-36.
  38. Lyashenko V.I., Homenko O.E. Povyshenie effektivnosti burovzryvnoj otbojki rudy v zazhatoj srede // Gornyj informacionno-analiticheskij byulleten'. – 2019. – № 11. – S. 59–72. DOI: 10.25018/0236-1493-2019-11-0-59-72.
151-170

Section 4. Usage of combustion processes and the impact of the explosion in industry
UDC 621.7.044.2
A.A. Mokeev, associate Professor, Candidate of technical Sciences,
R.Sh. Garifullin, associate Professor, Candidate of technical Sciences
(Federal state budgetary educational institution of higher professional education «Kazan national research technological University» – FGBOU VO «KNITU», Kazan, Russia)

Formation of micropores in the polymer base by detonation throwing of powder materials

Keywords:micropores, polymer base, detonation throwing, membranes, powdery materials, penetration depth, ammonite, pore density

Studies have been performed to study the possibility of forming micropores in a polymer base using the effect of ultra-deep penetration by detonation throwing of powdery materials. The influence of the size of the thrown particles on the size of the pores formed in the polymer blank was established. It was found that the pore density obtained in the base material by detonation throwing of powdered material has values ranging from 8.8×106 to 12.5×106 pieces/cm2. The established depth of the pore detected on the cross-section was about 70 microns with a cross-section size of 2.8 microns.

Bibliographic list:
  1. Fursov B.I. Razrabotka membrannyh tekhnologij i perspektivy proizvodstva izdelij na ih osnove v GNC RF-FEI (Development of membrane technologies and prospects for production of products based on them in the SSC of the Russian Federation-FEI). Konversiya v mashinostroenii = Conversion in mechanical engineering. 2001. Vol. 46. No. 3. pp. 63-71.
  2. Mulder M. Vvedenie v membrannuyu tekhnologiyu: Per. s angl. (Introduction to membrane technology: Per. from the English). Moscow : World, 1999. 513p.
  3. Rusanov E.S. Membrany v himicheskih processah: uchebnoe posobie (Membranes in chemical processes: textbook). Moscow : Education, 1998. 198p.
  4. Hvang San-Tak, Kammermejer K. Membrannye process razdeleniya: uchebnoe posobie(Membrane separation processes: textbook). Moscow: Chemistry, 1981. 464p.
  5. Teryaeva N.B. Malen'koe chudo iz Dubny (Small miracle from Dubna). Ezhenedel'nik OIYAI «Dubna» = JINR weekly newspaper «Dubna». 2004. No. 16.
  6. Usherenko S.M. Sverhglubokoe pronikanie chastic v pregrady i sozdanie kompozicionnyh materialov (Ultra-deep penetration of particles into barriers and creation of composite materials). Minsk: NIIIP, 1998. 208 p.
  7. Zel'dovich V.I., Homskaya I.V., Frolova N.YU. i dr. Strukturnye izmeneniya v zhelezonikelevyh splavah, vyzvannye dejstviem vysokoskorostnogo potoka poroshkovyh chastic. Effekty sverhglubokogo pronikaniya (Structural changes in iron-Nickel alloys caused by the action of a high-speed flow of powder particles. Effects of ultra-deep penetration). Fizikametallovimetallovedenie = Metal physics and metal science. 2002. Vol. 93. No. 5. pp. 86-94.
  8. Figovskij O.L., Gotlib E.M., Mokeev A.A. idr. Sverhglubokoe proniknovenie –novyj sposob polucheniya nanoarmirovannyh kompozitov na osnove polimernyh matric (Super deeppenetration – new method of nanoreinforced composites producing basedon polymermatrixes). Inzhenernyjvestnik Dona = Engineering Bulletin of the Don. 2014. Vol. 31. No. 4-1. pp. 133-137.
  9. Figovskij O.L., Gotlib E.M., Mokeev A.A. i dr. Poluchenie polimernyh nanomembran metodom sverhglubokogo proniknoveniya (Production of polymer nanomembranes by super deep penetration method). HimiyaiHimicheskayatekhnologiya = Chemistry and Chemical Technology. 2012. Vol. 9. No. 4. pp. 393-396.
  10. Vol'fson S.I., Gotlib E.M., Mokeev A.A i dr. Vliyanie sposoba vnedreniya nanonapolnitelya na svojstva polimernyh kompozicij (Influence of the method of introducing a nanofill on the properties of polymer compositions). VestnikKazanskogotekhnologicheskogouniversiteta = Bulletin of Kazan technological University.2011. Vol. 14. No. 14. pp. 186-189.
  11. Danilenko V.V. Vzryv: fizika, tekhnika, tekhnologiya (Explosion: physics, engineering, technology). Moscow: Energoatomizdat, 2010. 784 p.
  12. Selivanov V.V., Kobylkin I.F., Novikov S.A. Vzryvnye tekhnologii: uchebnik dlya vtuzov (Explosive technologies: a textbook for high schools). Moscow:MGTU im. N. E. Bauman, 2008. 648 p.
171-185
UDC 632.934
E.I. Galeeva, assistant Professor, Candidate of chem. Sciences,
(Federal state budgetary educational institution of higher professional education «Kazan national research technological University» – FGBOU VO «KNITU», Kazan, Russia)

Study of combustible briquettes based on ammonium nitrate that form insecticidal smoke

Keywords:briquette, insecticide, smoke, physical stability, ammonium nitrate, compressibility, characteristics of combustion of pyrotechnic composition

In this work, research has been carried out to develop and study the characteristics of physical stability and functioning of combustible briquettes intended for the creation and distribution of insecticidal smoke in order to protect animals and plants from insect pests. As an oxidizer, a supersaturated solution of ammonium nitrate and combustible components – peat, rice and buckwheat husks-were used. The study developed an optimal formulation of thermal compounds and the characteristics of their compressibility, combustion, and preserve the integrity of the pressed samples.

Bibliographic list:
  1. Mokeev A.A., Evdokimov A.P., Sal'nikov A.S. i dr. Issledovanie vosplamenyaemosti energonasyshchennogo materiala termoistochnika ot promyshlennogo elektroiniciatora (tudy of the Flammability of energy-saturated material of a thermal source from an industrial electric initiator).Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2015. Vol. 18. No. 4. pp. 208-210.
  2. Kosarev A.A., Mokeev A.A., Gil'mutdinov D.K. i dr. Produkty goreniya tverdotoplivnyh zaryadov: ocenka effektivnosti dejstviya na karbonatnye porody (Products Gorenje solid fuel charges: evaluation of the effectiveness of the action on carbonate rocks). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2015. Vol. 18. No. 17. pp. 77-79.
  3. Garifullin R.Sh., Bazotov V.YA., Mokeev A.A. i dr. Analiz rezul'tatov rascheta produktov goreniya termoplastichnogo tverdogo topliva (Analysis of the results of calculation of combustion products of thermoplastic solid fuel Gorenje). Vzryvnoye delo = Explosive case. 2011. No. 106-63. pp. 252-258.
  4. Chipiga S.V., Sadykov I.F., Marsov A.A. i dr. Ustrojstvo i tekhnologiya dlya kompleksnoj perforacii i termogazokislotnoj obrabotki prizabojnoj zony skvazhiny (Device and technology for complex perforation and thermal-gas-acid treatment of the bottom-hole zone of a well). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2012. Vol. 15. No. 24. pp. 126.
  5. Chipiga S.V., Sadykov I.F., Marsov A.A. i dr. Razrabotka sostava topliva gazogeneratora dlya obrabotki neftyanyh skvazhin (Development of the fuel composition of a gas generator for processing oil wells). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2012. Vol. 15. No. 7. pp. 168-170.
  6. Soldatova A.S., Sadykov I.F., Marsov A.A. i dr. Izuchenie struktury i ekspluatacionnyh harakteristik v zavisimosti ot vremeni hraneniya sostava termoistochnika, izgotovlennogo v usloviyah povyshennoj vlazhnosti (80-85%) (Study of the structure and performance characteristics depending on the storage time of the composition of a thermal source manufactured under high humidity conditions (80-85%). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2010. No. 8. pp. 104-111.
  7. Gagarkin D.M., Mokeev A.A., Marsov A.A. i dr. Issledovanie energonasyshchennyh materialov, primenyaemyh v tekhnologii kompleksnoj perforacii skvazhin (Research of energy-saturated materials used in the technology of complex well perforation). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2012. Vol. 15. No. 24. pp. 122.
  8. Petrov A. S., Mokeev A. A., Garifullin R. Sh. et al.Sgorayemyye kislotogeneriruyushchiye kompozitsii dlya povysheniya nefteotdachi plastov (Combustible acid-generating compositions for enhanced oil recovery). Vzryvnoye delo = Explosive case. 2018. No. 121-78. pp. 124-135.
  9. Mokeev A.A., Sal'nikov A.S., Badretdinova L.H. i dr. Issledovanie kombinirovannyh zaryadov energonasyshchennyh materialov dlya obrabotki neftyanyh skvazhin (Study of combined charges of energy-saturated materials for processing oil wells). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2014. Vol. 17. No. 15. pp. 268-269.
  10. Mokeev A.A., Sal'nikov A.S., Badretdinova L.H. i dr. Laboratornyj stend dlya izucheniya harakteristik goreniya kombinirovannyh zaryadov energonasyshchennyh materialov (laboratory stand for studying the combustion characteristics of combined charges of energy-saturated materials Gorenje). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2014. Vol. 17. No. 15. pp. 95-97.
  11. Mokeev A.A., Sal'nikov A.S., Platonov S.V. i dr. Izmeritel'nyj kompleks dlya opredeleniya skorosti detonacii energonasyshchennyh materialov (Measuring complex for determining the detonation rate of energy-saturated materials). Vzryvnoye delo = Explosive case. 2015. No. 113-70. pp. 183-190.
  12. Badretdinova L.H., Sadykov I.F., Mokeev A.A. i dr. Issledovanie zavisimosti harakteristik goreniya ot fizicheskoj stabil'nosti energonasyshchennogo materiala termoistochnika (Study of the dependence of Gorenje characteristics on the physical stability of the energy-saturated material of the thermal source). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2014. Vol. 17. No. 7. pp. 120-122.
  13. Garifullin R.Sh., Bazotov V.YA., Sal'nikov A.S. i dr. Eksperimental'nye issledovaniya opytnyh obrazov termogazogeneratora dlya obrabotki skvazhin po opredeleniyu temperatury goreniya, udel'nogo gazoobrazovaniya i soderzhaniya tverdyh shlakov (Experimental studies of experimental images of a thermogasogenerator for processing wells to determine the combustion temperature, specific gas formation and solid slag content Gorenje).Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University.2014. Vol. 17. No. 18. pp. 186-188.
  14. Mokeev A.A., Soldatova A.S., Badretdinova L.H. i dr. Issledovanie fizicheskoj stabil'nosti energonasyshchennyh sostavov himicheski aktivnogo elementa, prednaznachennogo dlya obrabotki neftyanyh skvazhin (Study of the physical stability of energy-saturated compositions of a chemically active element intended for processing oil wells). Vzryvnoye delo = Explosive case. 2012. No. 107-64. pp. 49-59.
  15. Garifullin R.Sh., Borisov V.M., Mokeev A.A. i dr. Issledovanie energeticheskih harakteristik termoplastichnogo tverdogo topliva na osnove nitrata ammoniya i poroshkoobraznogo elastomera (Investigation of energy characteristics of thermoplastic solid fuel based on ammonium nitrate and powdered elastomer). Vzryvnoyedelo = Explosivecase. 2012. No. 107-64. pp. 60-68.
  16. Shidlovskij A.A. Pirotekhnika v narodnom hozyajstve (Pyrotechnics in the national economy). Moscow : Goskhimizdat, 1958. 264 p.
186-197
UDC 004.94, 539.3
A.R. Mukhutdinov, Professor, doctor of technical Sciences
R.Sh. Garifullin, associate Professor, Candidate of technical Sciences
M.G. Efimov, postgraduate
V.N. Alexandrov, senior lecturer
(Federal state budgetary educational institution of higher professional education «Kazan national research technological University» – FGBOU VO «KNITU», Kazan, Russia)

Computer simulation of the process of accumulating ballistite fuel charges

Keywords:computer simulation, cumulation, cumulative charge, model, ballistite fuel, charge, method, ANSYS AUTODYN

This article describes the development and development of a method for solving the problem of modeling the breakdown action of cumulative charges of ballistite fuel using computer models in the ANSYS AUTODYN application software. The forecast of the values of the penetration depth in the steel barrier is clearly demonstrated. A comparative analysis of the obtained dependence, the results of computer modeling and experiments is carried out. It is shown that the results of computer modeling are fully consistent with the results of experiments.

Bibliographic list:
  1. Baum F.A., Stanyukovich K.P., Shekhter B.I. Fizika vzryva (Physics of explosion). Moscow: Publishing house of physical and mathematical literature, 1959. 800 p.
  2. Majer V.V. Kumulyativnyj effekt: uchebnye issledovaniya (Cumulative effect: educational research). Moscow: Publishing house of physical and mathematical literature, 2007. 208p.
  3. Fedorov A.I. Izuchenie kumulyativnogo effekta vzryva zaryadov so steklyannymi oblicovkami : dis. … kand. tekhn. nauk (Study of the cumulative effect of the explosion of charges with glass facings: dis. ... kand. doctor of technical Sciences). Kazan: publishing house of Kazan chemical and technological University, 1965. 225 p.
  4. Belyaev A.F. Gorenie, detonaciya i rabota vzryva kondensirovannyh system (Combustion, detonation and work of explosion of condensed systems).Moscow: Science, 1968. 255p.
  5. Muhutdinov A.R., Efimov M.G. Osnovy primeneniya ANSYS AUTODYN dlya resheniya zadach modelirovaniya bystroprotekayushchih processov (Basics of using ANSYS AUTODYN to solve problems of modeling fast-flowing processes). Kazan: KNITUpublishingHouse, 2018. 244 p.
  6. Боровков А.И. Компьютерный инжиниринг: учебное пособие. – С-П.: Изд-во Политехн. ун-та, 2012. – 93 с.
  7. BorovkovA.I. Komp'yuternyj inzhiniring: uchebnoe posobie (Computer engineering: textbook). S-P.: Publishing house of Polytechnical Institute, 2012. 93 p.
  8. Muhutdinov A.R., Vahidova Z.R., Efimov M.G. Komp'yuternoe modelirovanie brizantnogo dejstviya vzryva (Computer simulation of the high-explosive effect of an explosion). Informacionnye tekhnologii = Information technology.2016. Vol. 22. No. 5. pp. 340-343.
198-206

 << Back
User login
Name:

Password:
Lost password?Register
Password retrival
User name or e-mail:


Enter code:
 
New user registration

User name:

Password:

Repeat password:

Enter code:
Organization name:

INN/KPP:

Juridical address:

Post address:

Contact phone number:

Contact person:

E-mail:
Full name:

Contact phone number:

Post address:

E-mail:
 
Access to electronic version

Texts of the articles are available to registered users who have paid for access to the selected journal issue.