"Explosion technology"— scientific and technical journal

Journal was founded in 1922 by a group of engineers. In Russia and the CIS "Explosion technology" is the only one peer-reviewed specialized periodical in the field of blasting.

Issue 136/93 (2022)

Theory and practice of blasting work

Brief view
 Article title Pages  
Title and imprint 

Section 1. Studies of rock destruction by explosion
UDC 622.235:620.22
V.N. Odintsev, Leading Researcher, Doct. of Sc. Tech.,
V.M. Zakalinsky, Leading Researcher, Doct. of Sc. Tech.,
I.N. Lapikov, Senior Researcher, Cand. of Sc. Tech.,
R.Ya. Mingazov, specialist, Lead Engineer
(Institute of Comprehensive Exploitation of Mineral Resources named after academic N.N. Melnikov Russian Academy of Sciences)

Modeling of the explosive directionality of close charges

Keywords:rocks, explosion, converging charges, well bundles, modeling, stress state, crushing zone, crack formation zone

Explosive destruction of an array of rocks by close charges is a promising direction for improving the technology of mining. Close charges are a form of dispersal of the bulk of the charge into small charges in wells drilled close to one another. By placing the charges in beams of wells in different ways, it is possible to control the effect of the blast wave and the aftereffect of the explosion in relation to the destruction of the rock mass.
The paper considers theoretical aspects of the action of close charges in relation to the crushing of rock in the zone near the blast well, and the remote zone in which the tensile cracks develop. Calculations of the influence of the geometric location of blast wells were carried out under the same loads on the array and the strength properties of rocks. It follows from the calculations that the crushing zone has the largest dimensions for the layout of wells with extremely close charges, and the smallest dimensions are characteristic of a single well. The greatest extent of the crushing zone is realized with the maximum proximity of wells in one row, and the minimum extent with the dispersal of charges. The scheme of one large charge creates more favorable conditions for the development of radial cracks. When using a well beam, the predominant orientation of the separation cracks is determined by the directions of tensile stresses concentration. At the same time, in certain directions, when using a well beam, radial cracks can be much more extensive than in the case of a single charge.
Thus, the explosive directionality is not equally manifested in the near and remote zones. This conclusion should be taken into account when designing blasting operations in mining and construction practice

Bibliographic list:
  1. Trubetskoy K.N., Kaplunov D.R., Rylnikova M.V., Radchenko D.N., etc. Razvitie resursosberegayushchikh i resursovosproizvodyashchikh geotekhnologiy kompleksnogo osvoeniya mestorozhdeniy poleznykh iskopaemykh (Development of resource–saving and resource–reproducing geotechnologies of complex development of mineral deposits). Moscow. IPKON RAS. 2012. 206 p.
  2. Zhang Z. Problems and possibilities of blasting operations in mining. Materials. 2019. No. 5. pp. 19-22.
  3. Budko A.V., Zakalinsky V.M. K teorii deystviya vzryva sblizhennykh skvazhin (To the theory of the action of explosion of converging wells). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 1965. No. 6.
  4. Viktorov S.D., Galchenko Yu.P., Zakalinsky V.M., Rubtsov S.K. Razrushenie gornykh porod sblizhennymi zaryadami. pod red. akad. K.N. Trubetskogo (Destruction of rocks by close charges / ed. akad. K.N. Trubetskoy). Moscow. Nauchtekhlitizdat. 2006. 276 p.
  5. Sher E.N. Modelirovanie razrusheniya gornykh porod pri vzryve sblizhennykh skvazhinnykh i shpurovykh zaryadov (Modeling of rock destruction during the explosion of converged borehole and hole charges). Fundamentalnye i prikladnye voprosy gornykh nauk = Fundamental and applied issues of mining sciences. 2018. Volume 5. No. 1. pp. 171-176.
  6. Lizunkin M.V., Lizunkin V.M. Otboyka rudy parallelno sblizhennymi zaryadami v fiziko-tekhnicheskikh geotekhnologiyakh. (Ore stripping with parallel converged charges in physico-technical geotechnologies). Inzhenernaya fizika = Engineering Physics. 2021. No. 11. pp. 31-38.
  7. Galchenko Yu.P. Eksperimentalnye issledovaniya fizicheskikh protsessov drobleniya rudy dekontsentrirovannymi zaryadami v usloviyakh zazhima (Experimental studies of physical processes of ore crushing by deconcentrated charges under clamping conditions). Prikladnaya fizika i matematika = Applied Physics and Mathematics. 2021. No. 5. pp. 8-22.
  8. Rodionov V.N., Adushkin V.V., Kostyuchenko V.N., Nikolaevsky V.N., Romashov A.N., Tsvetkov V.M. pod red. akademika M.A. Sadovskogo. "Mekhanicheskiy effekt podzemnogo vzryva" (ed. academician M.A. Sadovsky. "The mechanical effect of an underground explosion.") Moscow. Nedra. 1971. 224 p.
  9. Kryukov G.M., Glazkov Yu.V. Fenomenologicheskaya kvazistatichesko-volnovaya teoriya deformirovaniya i razrusheniya materialov vzryvom zaryadov promyshlennykh VV (Phenomenological quasi-static wave theory of deformation and destruction of materials by explosion of charges of industrial explosives). Gornyy Informatsionno- naliticheskiy Byulleten = Mining Information and Analytical Bulletin. 2007. No. S5. pp. 169-183.
  10. Kononenko M., Khomenko O. New theory of destruction of rock mass by blasting // Development of mineral deposits. 2021. V15. Issue 2, pp. 111-123. https://doi.org/10.33271/mining15.02.111.
  11. Adushkin V.V., Spivak A.A. Geomekhanika krupnomasshtabnykh vzryvov (Geomechanics of large–scale explosions). Moscow. Nedra. 1993. 319 p.
  12. Zong-Xian Zhang. Rock Fracture and Blasting. Theory and Applications. Butterworth-Heinenmann Elsevier. 2016. 528 p.
  13. Pal Roy P. Rock Blasting: Effects and Operations. 2005. Leiden: A.A. Balkema, CRC Press, 380 p.
  14. Alexandrova N.I., Sher E.N. Uchet dilatansii pri opisanii razrusheniya gornykh porod vzryvom tsilindricheskogo zaryada (Accounting for dilatancy in the description of the destruction of rocks by the explosion of a cylindrical charge). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 1999. No. 4. pp. 400-408.
  15. Mohanty B., and Dehghan Banadaki M.M. Characteristics of stress‐wave induced fractures in controlled laboratory‐scale blasting experiments, APS Blasting 2 (ed. Xuguang, W.), Metallurgical Industry Press, China. 2009. pp. 43-49.
  16. Sher E.N., Chernikov A.G. Raschet parametrov radialnoy sistemy treshchin, obrazuyushcheysya pri vzryve udlinennogo zaryada v khrupkikh gornykh porodakh (Calculation of parameters radial system of cracks formed during the explosion of an elongated charge in brittle rocks). Fundamentalnye i prikladnye voprosy gornykh nauk = Fundamental and applied issues of mining Sciences. 2015. Vol. 2. No. 2. pp. 299-303.
  17. Figuli L., Cekerevac D., Bedon Ch. And Leitner B. Numerical Analysis of the Blast Wave Propagation due to Various Explosive Charges. In “Advancements in Design and Analysis of Protective Structures" (Academic Editor: Luigi Di Sarno). 2020. Article ID 8871412. doi.org/10.1155/2020/8871412.
  18. Dambaev Zh.G., Kovalevsky V.N. Matematicheskaya model dvizheniya produktov vzryva v shpure dlya obespecheniya protsessa napravlennogo razrusheniya gornykh porod (Mathematical model of the motion of explosion products in the hole to ensure the process of directional destruction of rocks). Vestnik Buryatskogo gosudarstvennogo universiteta = Bulletin of the Buryat State University. 2011. No. 9. pp. 249-252.
  19. Lanari M., Fakhimi A. Numerical study of contributions of shock wave and gas penetration toward induced rock damage during blasting. Computational Particle Mechanics. 2015 Vol 2. pp.197-208. DOI:10.1007/S40571-015-0053-8
  20. Kazakov N.N., Shlyapin A.V., Lapikov I.N. Mnogofaznaya i mnogozonnaya teoriya tekhnologicheskogo drobleniya gornykh porod vzryvom (Multiphase and multi-zone theory of technological crushing of rocks by explosion). V sbornike: 50 let rossiyskoy nauchnoy shkole kompleksnogo osvoeniya nedr zemli. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii = In the collection: 50 years of the russian scientific school of integrated development of the earth's interior. Materials of the International Scientific and Practical Conference. 2017. pp. 56-59.
  21. Johnson C.E. Effect of Wave Collision on Fragmentation, Throw, and Energy Efficiency of Mining and Comminution. In book: Energy Efficiency in the Minerals Industry: Best Practices and Research Directions (Editor Kwame Awuah-Offei). 2018. DOI: 10.1007/978-3-319-54199-0_4.
  22. Kochanov A.N., Odintsovo V.N. Volnovoe predrazrushenie monolitnykh gornykh porod pri vzryve (Wave pre-destruction of monolithic rocks during explosion. Physico-technical problems of mineral development). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2016. No. 6. pp. 38-48.
  23. Li Yi., Cao Ji., Chen X., Huang Ch., Zhao Qi. Numerical Investigation on Crack Formation and Penetration Mechanism between Adjacent Blastholes. Shock and Vibration. Volume 2020. Article ID 8816059. 10 pages. https://doi.org/10.1155/2020/8816059.
  24. Zheming Zhu., Bibhu Mohanty., Heping Xie. Numerical investigation of blasting-induced crack initiation and propagation in rocks, Int. J. Rock Mech. Min. Sci. 2007. Volume 44. Issue 3. pp. 412-424.
  25. Silva J., Worsey T., Lusk B. Practical assessment of rock damage due to blasting. International Journal of Mining Science and Technology. Volume 29. Issue 3. May 2019. pp. 379-385.https://doi.org/10.1016/j.ijmst.2018.11.003.
  26. Kachanov L.M. Osnovy mekhaniki razrusheniya (Fundamentals of fracture mechanics). Moscow. Nauka. 1974. 312 p.
  27. Nikitin L.V., Odintsev V.N. Mekhanika otryvnogo razrusheniya szhatykh gazonosnykh gornykh porod (Mechanics of tear-off destruction of compressed gas-bearing rocks). Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela = Mechanics of a solid body. 1988. No. 6. pp.135-144.
  28. Nikitin L.V., Odintsev V.N. A dilatancy model of tense macrocracks in compressed rock. Fatigue & Fracture of Engineering Materials & Structures. 1999. Vol. 22. No.11. pp. 1003-1009.
  29. Zakharov V.N., Viktorov S.D., Zakalinsky V.M., Shipovsky I.E., Mingazov R.Ya., Postavnin B.N., Dugartsyrenov A.V., Eremenko A.A. Sposob neytralizatsii vliyaniya anomaliy sostoyaniya massiva na gornye razrabotki. Zayavka (A method of neutralizing the influence of anomalies of the state of the massif on mining). Application No. 2021130934/03(065646).
5-24
UDC 622.235
N.N. Kazakov, Leading researcher, Dr.,
A.V. Shlyapin, Deputy director, Ph. D,
L.I. Molodchinina, lead engineer
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – ICEMR RAS)

Crushing of rock in the upper layer by spherical camouflage, wave and quasistatic explosion phases

Keywords:explosion, top layer, quarry ledge, technological crushing, spherical camouflage phase, spherical wave phase, spherical quasi-static phase

The article introduces the method proposed by the authors for determining the degree of crushing of rock in the upper layer of the ledge of the crushing block by spherical camouflage, wave and quasi-static phases of the explosion. Using the computer software developed by the authors, the granulometric composition was calculated for specific blasting conditions and the degree of influence of the explosion of the borehole charge of industrial explosives on the granulometric composition in the upper layer of the quarry ledge was assessed.

Bibliographic list:
  1. Kazakov N.N. Shlyapin A.V., Lapikov I.N. Mnogofaznaya i mnogozonnaya teoriya tekhnologicheskogo drobleniya gornyh porod vzryvom. Mezhdunarodnaya nauchno-prakticheskaya konferenciya «50 let Rossijskoj nauchnoj shkole kompleksnogo osvoeniya nedr zemli». – M.: IPKON RAN, 2017. – C.56-59.
  2. Kazakov N.N. Gipoteza mnogourovnevogo drobleniya porody vzryvom // Vzryvnoe delo, № 103/60. – M.: MVK po vzryvnomu delu AGN, 2010. – S.30-38.
  3. Shlyapin A.V. Model' peredachi energii vzryva v porodu. Nauka i novejshie tekhnologii pri poiskah, razvedke i razrabotke mestorozhdenij poleznyh iskopaemyh: Materialy V Mezhdunarodnoj nauchno-prakticheskoj konferencii. – M.: RGGRU, 2006. – S. 96–97.
  4. Adushkin V.V. Model'nye issledovaniya razrusheniya gornyh porod vzryvom. «Fizicheskie problemy vzryvnogo razrusheniya massivov gornyh porol». – M.: IPKON RAN, 1999. – S.18-29.
  5. Kutuzov B.N. Proektirovanie vzryvnyh rabot v promyshlennosti. – M.: Nedra, 1983. – S. 359.
  6. Viktorov S.D., Kazakov N.N., Shlyapin A.V. Glavnaya faza tekhnologicheskogo drobleniya porod vzryvom. Problemy osvoeniya nedr v XXI veke glazami molodyh. Materialy 14 Mezhdunarodnoj nauchnoj shkoly molodyh uchenyh i specialistov. 28 oktyabrya – 01 noyabrya 2019 g. – M.: IPKON RAN, 2019. – S.94-99
  7. Viktorov S.D., Kazakov N.N., Shlyapin A.V., Lapikov I.N. Camouflet Blasting of a Finite-Length Borehole Charge. Proceedings of the 8th Internftional cjnference on physical problems of rock destruction. - Beijing, China: Metallurgical Industry Press, 2014. – P.28-31.
  8. Shlyapin A.V., Lapikov I.N. O Raschete krupnosti drobleniya gornyh porod vzryvom. Inzhenernaya fizika, №7. - M.: OOO Izd-vo «Nauchtekhlitizdat», 2018. – S.51-54.
  9. Viktorov S.D., Kazakov N.N., Shlyapin A.V. Vliyanie verhnej zony nereguliruemogo drobleniya na vyhod negabarita po kar'ernomu bloku. Vzryvnoe delo. Vypusk № 116/73. – M.: ZAO «MVK po vzryvnomu delu pri AGN», 2016. – S.5-15.
25-35
UDC 622.233
V.A. Isheyskiy, associate Prof., Candidate of Engineering Sciences, Blasting design department
V.N. Kovalevskiy, associate Prof., Candidate of Engineering Sciences, Blasting design department
A.S. Vasiliev, Student, Blasting design department
(Saint Petersburg Mining University)

Neural network data analysis in the process of blasting borehole drilling

Keywords:Measurement While Drilling, MWD, drilling monitoring, drilling parameters, rock properties, blasting parameters, machine learning

Scientific research "Development of a method for predicting the fragmentation of blasted rocks based on measurement while drilling (MWD) data and machine learning" are carried out by the St. Petersburg Mining University and the "Problem Laboratory of Explosive Technologies" with financial support from the "Council for Grants of the President of the Russian Federation for State Support of Young Russian Scientists and for State Support of Leading Scientific Schools of the Russian Federation". An article presents a basic neural network and a deep neural network model using a machine learning genetic algorithm for optimization in predicting geological by MWD data from blast holes. The article discusses and describes the operation of two machine learning algorithms and presents confusion matrices for training neural networks, analyzes the accuracy of predictions of various geotypes, and performs a predictive assessment of the ability of each network. To evaluate the use as input data for training in the process of drilling blastholes, the main two-parameter and three-parameter groups of data that significantly affect the predictive accuracy are identified.

Bibliographic list:
  1. Isheyskiy V., Sanchidrián J. A. Prospects of Applying MWD Technology for Quality Management of Drilling and Blasting Operations at Mining Enterprises. Minerals 2020, Vol 10(10), art. 925.
  2. Navarro J., Schunnesson H., Johansson D., Sanchidrián J.A., Segarra P. Application of drill-monitoring for chargeability assessment in sublevel caving. International Journal of Rock Mechanics and Mining Sciences 2019, Vol. 119, pp. 180-192.
  3. Ghosh R., Schunnesson H., Gustafson A. Monitoring of Drill System Behavior for Water-Powered In-The-Hole (ITH) Drilling. Minerals 2017, Vol. 7 (7), art. 121.
  4. Isheyskiy V., Martinyskin E., Smirnov S., Vasilyev A., Knyazev K., Fatyanov T., Specifics of MWD Data Collection and Verification during Formation of Training Datasets. Minerals 2021, 11, 798.
  5. Bergstra J., Bengio Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, pp. 281-305
  6. Fang, Y., Wu, Z., Sheng, Q., Tang, H., Liang, D. Tunnel Geology Prediction Using a Neural Network Based on Instrumented Drilling Test. Appl. Sci. 2021, 11, 217.
  7. Bianchini M., Scarselli F. On the Complexity of Neural Network Classifiers: A Comparison between Shallow and Deep Architectures. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, pp. 1553–1565.
  8. Vezhapparambu V., Eidsvik J., Ellefmo S. Rock Classification Using Multivariate Analysis of Measurement While Drilling Data: Towards a Better Sampling Strategy. Minerals 2018, 8, 384
36-49
UDC 622.272:235
A.A. Rozhkov, candidate of technical sciences, senior research worker of the laboratory of underground geotechnology,
Yu.G. Antipin, candidate of technical sciences, head of the laboratory of underground geotechnology,
K.V. Baranovsky, candidate of technical sciences, senior research worker of the laboratory of underground geotechnology,
(Institute of Mining of the Ural branch of Russian Academy of Sciences – IM UB RAS)

Development of methods for assessing technological measures to reduce the damage from ore regrinding during explosive breaking

Keywords:drilling and blasting, underground geotechnology, ore regrinding, damage, technological measures, unification, rating, adaptability, universality

In underground mining, there is a problem of damage from over-grinding of ore as a result of the consequences of drilling and blasting operations at a stope. The fine fractions formed as a result, enriched with ore minerals, accumulate in hard-to-reach places in the stoping area and are most often lost. The volume of this type of loss of broken ore can reach 2-5% or more. When regrinding non-metallic ores, losses in the form of substandard raw materials reach 15-25% or more. Despite a significant variety of measures aimed at preventing, eliminating or minimizing the negative consequences of mineral regrinding, at present there is virtually no unified methodological basis for their assessment and justification. This paper proposes a methodology for assessing measures to reduce the damage from ore regrinding during underground mining, based on an expert-analytical rating system, which allows converting qualitative characteristics into quantitative indicators, taking into account the main and specific factors of the implementation of measures. The activities are united according to the main applied forces and tools of influence on the object and are systematized in accordance with the technological and chronological principles. It has been established that the most applicable in relation to various classes of underground mining systems, adaptive to the main and specific factors, the most universal are preventive measures to reduce damage from ore regrinding, based on the use of resource-saving, gentle and special methods of blasting directly when separating ore from the array, as well as in the preparation for mining. The results obtained are the basis for the subsequent unification of approaches to the substantiation and improvement of activities within the framework of a single methodology.

Bibliographic list:
  1. Galchenko Yu.P., Sabyanin G.V. Problemy geotekhnologii zhil'nyh mestorozhdenij (Problems of geotechnology of vein deposits). M.: Nauchtekhlitizdat, 2011. 367 p.
  2. Adushkin V.V., Brigadin I.V., Kocharyan G.G., Krasnov S.A. K voprosu o mekhanizme razrusheniya prochnyh skal'nyh porod podzemnym vzryvom (To the question of the mechanism of destruction of strong rocks by underground explosion) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2015. No. 7. P. 344-349.
  3. Torbica S., Lapčević V. Rock fracturing mechanisms by blasting // Podzemni radovi. 2018. Vol. 32. P.15-31. DOI: 10.5937/PodRad1832015T
  4. Lomonosov G.G., Turtygina N.A. Yavlenie segregacii rudnoj massy i ego vliyanie na formirovanie kachestva produkcii gornorudnogo proizvodstva (The phenomenon of ore mass segregation and its influence on the formation of the quality of mining products) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2014. No. 6. P. 37-40.
  5. Lizunkin M.V., Lizunkin V.M., Sitnikov R.V. Issledovanie gidromekhanicheskogo sposoba zachistki obogashchennoj rudnoj melochi s pochvy vyrabotannogo prostranstva (Investigation of the hydromechanical method of stripping enriched ore fines from the soil of the mined-out space) // Inzhenernaya fizika = Engineering Physics. 2020. No. 11. P. 54-60. DOI 10.25791/infizik.11.2020.1177.
  6. Rogiznyj V.F., Hromov V.M., Karpuhina M.V. Tekhnologii selektivnoj vyemki malo-moshchnyh rudnyh tel s primeneniem malogabaritnogo samohodnogo oborudovaniya (Technologies for selective mining of thin ore bodies using small-sized self-propelled equipment) // Gornaya promyshlennost' = Mining industry. 2020. No. 1. P. 34-41.
  7. Agoshkov M.I. Nauchnye osnovy ocenki ekonomicheskih posledstvij poter' poleznyh iskopaemyh pri razrabotke mestorozhdenij (Scientific bases for assessing the economic consequences of the loss of minerals during the development of deposits). M.: AN SSSR, 1972. 149 p.
  8. Popov N.I., Ivanov A.A. Snizhenie poter' otbitoj rudy pri razrabotke naklonnyh zalezhej (Reducing the loss of broken ore during the development of inclined deposits). Magadan: Knizhnoe izd-vo, 1979. 62 p.
  9. Pavlov A.M., Semenov Yu.M. Primenenie vakuumnoj tekhnologii pri zachistke rudy v usloviyah kriolitozony rudnika «Irokinda» (The use of vacuum technology in ore cleaning in the permafrost zone of the Irokinda mine) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2007. No. 11. P. 24-29.
  10. Glotov V.V., Pahaluev B.G. Optimizaciya rasstoyaniya mezhdu stenkami zhelobov pri gidrozachistke vyemochnyh blokov (Optimization of the distance between the walls of the gutters in the hydraulic cleaning of excavation blocks) // Vestnik Zabajkal'skogo gosudarstvennogo universiteta = Bulletin of the Transbaikal State University. 2016. No. 4. P. 4-9.
  11. Sokolov I.V., Smirnov A.A., Rozhkov A.A. Otboyka kvartsa rassredotochennyimi skva-zhinnyimi zaryadami pri podzemnoy dobyiche (Quartz breakage by dispersed borehole charges in underground mining) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2017. No 10. pp. 178-185. DOI: 10.25018/0236-1493-2017-10-0-178-185.
  12. Smirnov A.A., Rozhkov A.A. Issledovanija dejstvija vzryva veera skvazhinnyh zarjadov (Investigations of explosion action of blast hole ring charges) // Vzryivnoe delo = Explosion technology. 2018. No 119/76. pp. 118-128.
  13. Voronov E.T., Bondar' I.A. Obosnovanie i razrabotka mineralosberegayushchih geotekh-nologij dobychi cennogo samocvetnogo syr'ya s ispol'zovaniem burovzryvnyh rabot (Substantiation and development of mineral-saving geotechnologies for the extraction of valuable semi-precious raw materials using drilling and blasting) // Vestnik Zabajkal'skogo gosudarstvennogo universiteta = Bulletin of the Transbaikal State University. 2014. No. 2 (105). P. 9-16.
  14. Rozhkov A.A. Sistematizaciya sposobov snizheniya poter' rudnoj melochi pri podzemnoj razrabotke mestorozhdenij (Systematization of ways to reduce losses of ore fines during underground mining) // Problemy nedropol'zovaniya = Problems of subsoil use. 2021. No. 3(30). P. 16-28. DOI 10.25635/2313-1586.2021.03.016.
  15. Antipin Yu.G., Baranovskij K.V., Rozhkov A.A., Klyuev M.V. Obzor kombinirovannyh sistem podzemnoj razrabotki rudnyh mestorozhdenij (Review of combined systems of underground mining of ore deposits) // Problemy nedropol'zovaniya = Problems of subsoil use. 2020. No 3(26). P. 5-22. DOI 10.25635/2313-1586.2020.03.005.
  16. Volkov Yu.V., Sokolov I.V. Podzemnaya razrabotka mednokolchedannyh mestorozhdenij Urala (Underground mining of copper pyrite deposits in the Urals). Ekaterinburg: UrO RAN, 2006. 232 p.
  17. Pelipenko M.V., Ajnbinder I.I., Ryl'nikova M.V. Principy ocenki riska avarii pri ekspluatacii podzemnyh rudnikov (Principles for assessing the risk of an accident during the operation of underground mines) // Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle = News of the Tula State University. 2021. No. 4. P. 178-192. DOI 10.46689/2218-5194-2021-4-1-178-192.
  18. Ajnbinder I.I., Kaplunov D.R. Risk-orientirovannyj podhod k vyboru geotekhnologij podzemnoj razrabotki mestorozhdenij na bol'shih glubinah (Risk-based approach to the choice of geotechnologies for underground mining at great depths) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2019. No. 4. P. 5-19. DOI: 10.25018/0236-1493-2019-04-0-5-19.
  19. Stacey T.R. Rock engineering design – the importance of process, prediction of behaviour, choice of design criteria, review and consideration of risk // Proceedings of the International Seminar on Design Methods in Underground Mining, Australian Centre for Geomechanics, Perth (2015), pp. 57-76. DOI 10.36487/ACG_rep/1511_0.4_Stacey
  20. Baranovskij K.V., Harisova O.D. Ocenka fakticheskih pokazatelej izvlecheniya rudy po dannym lazernogo skanirovaniya pri podzemnoj razrabotke (Estimation of actual indicators of ore extraction according to laser scanning data in underground mining) // Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle = News of the Tula State University. 2018. No. 4. P. 135-147.
  21. Sosnovskaia E.L., Avdeev A.N. Control over the geotechnical processes at the goldfields of Eastern Siberia // Izv. vuzov. Gornyiy zhurnal = News of the Higher Institutions. Mining Journal. 2019. No 5. P. 21-29. DOI 10.21440/0536-1028-2019-5-21-29.
  22. Fugzan M.D., Kaplunov D.R., Pazynich V.I. Intensivnost' podzemnoj ekspluatacii rudnyh mestorozhdenij (Intensity of underground exploitation of ore deposits). M.: Nauka, 1980. 141 p.
  23. Kajmonov M.V., Hoholov YU.A., Kurilko A.S. Issledovanie vliyaniya temperatury i vlagosoderzhaniya vozduha na processy kondensacii vlagi i smerzaniya otbitoj rudy v ochistnyh blokah rudnikov (Investigation of the influence of temperature and moisture content of air on the processes of moisture condensation and freezing of broken ore in the treatment blocks of mines) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2010. No. 10. P. 314-324.
50-67

Section 2. State and improvement of explosives, devices and blasting agents
UDC 622.235.24
Koretsky A.S. – Senior lecturer
(N.M. Fedorovsky Polar State University)
Maslov I.Yu. – Candidate of Technical Sciences, Chief Engineer
(Global Mining Explosive-Russia LLC)
Gorinov S.A. – Doctor of Technical Sciences, leading researcher, Scientific consultant of Global Mining Explosive-Russia LLC
(Institute of Comprehensive Exploitation of Mineral Resources named after academic N.N. Melnikov Russian Academy of Sciences)

Experimental study of rheological properties of an mulsion with an oxidizing phase from a binary solution of ammonium and calcium nitrate

Keywords:EE emulsion, viscosity, shear rate, shear stresses, pseudoplastic fluid

This paper presents experimental data on the study of rheological properties of emulsions with an oxidizing phase from a binary solution of ammonium and calcium nitrate. It is shown that: the rheological properties of emulsions with an oxidizing phase from a binary solution of ammonium nitrate and calcium nitrate correspond to the rheological properties of pseudoplastic liquids; the content of ammonium nitrate, calcium nitrate, water does not have a statistically significant effect on the viscosity and shear stress in the considered range of their contents. Due to the fairly wide dissemination of EE data, knowledge of their rheological properties is undoubtedly of scientific and practical interest.

Bibliographic list:
  1. Ksyuguang V. Emulsion explosives. Moscow: Krasnoarmeysk, 2002. - 380 p.
  2. Kolganov E.V. Emulsion industrial explosives. 1st book (Compositions and properties)/ Kolganov E.V., Sosnin V.A. - Dzerzhinsk, Nizhny Novgorod region, publishing house of the State Research Institute "Crystal", 2009. - 592 p.
  3. Gorinov S.A. Initiation and detonation of emulsion explosives / Gorinov S.A. – Yoshkar-Ola: STRING, 2020. – 214 p. – DOI 10.25625/y1981-6651-8304- y.
  4. Gorinov S.A. Investigation of the structure of emulsifiers/ Gorinov S.A., Maslov I.Yu., Sobina E.P.// Mining information and analytical bulletin. Separate articles. – 2011. - No. 9. – pp. 3-14.
68-78

Section 3. Technology of blasting in the mining of solid minerals
UDC 622.235
M.A. Marinin, Assistant Professor, Candidate of Engineering Sciences,
V.A. Isheyskiy, Assistant Professor, Candidate of Engineering Sciences,
V.I. Sushkova, research assistant
(Saint-Petersburg Mining University - SPMU)
R.A. Rakhmanov, researcher, Candidate of Engineering Sciences
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS)

Complex study of the disintegration parameters of a blasted rock mass

Keywords:blasted rock mass, explosive block, granulometric composition, performance of mining-and-transport complex, coefficients of loosening, output off-gauge faction, excavation, drilling and blasting operations

The purpose of the study is to describe a method for studying the parameters of a block prepared by drilling and blasting for excavation. The approbation of the method of studying the parameters is described by the example of the stripping block of the Vostochny quarry of the Olympiadinsky deposit. The article presents the results of the evaluation of the granulometric composition of the blasted rock mass and output of off-gauge faction, an estimate of the disintegration geometry and determines the coefficient of loosening of the block under study. The article analyzes the performance of the mining and transport complex involved in the processing of the block under study (excavator WK-35 and CAT 793D dump trucks).

Bibliographic list:
  1. McKee D. Understanding mine to mill. Brisbane Australia, Cooperative research centre for optimising resource extraction, 2013. 96 p.
  2. Cameron P., Drinkwater D., Pease J. The ABC of Mine to Mill and metal price cycles // Proceedings 13th AusIMM Mill Operators’ Conference. The Australasian Institute of Mining and Metallurgy: Melbourne. 2016. pp. 349–358.
  3. Vinogradov Yu. I., Khokhlov S. V. Metod rascheta parametrov burovzrivnih rabot na zadannyy granulometricheskyy sostav vzorvannoi gornoi massi (Method for calculating the parameters of drilling and blasting operations for a given granulometric composition of the exploded rock mass). Gornyy Informatsionno-analiticheskiy Byulleten = Mining Information- Analytical Bulletin. 2015. No. S1-4. pp. 20–29.
  4. Egorov V. V., Volokitin A. N., Ugolnikov N. V., Sokolovsky A. V. Obosnovanie parametrov i tehnologii proizvodstva burovzrivnih rabot_ obespechivayuschih trebuemuyu kuskovatost (Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness). Gornaya promishlennost. 2021. No. 3. pp. 110– 115. DOI 10.30686/1609-9192-2021-3-110-115
  5. Opanasenko P. I., Isaichenkov A. B. Optimizaciya kuskovatosti vzorvannih poluskalnih vskrishnih porod na razreze «Tugnuiskii» (Optimization of lumpiness of blasted semi-horizontal overburden rocks at the Tugnuysky section). Gornyy jurnal = Journal of Mining Institute. 2015. No. 9. pp. 25–35.
  6. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Ocenka narabotki karernih ekskavatorov perspektivnogo modelnogo ryada v realnih usloviyah ekspluatacii (Promising model range career excavators operating time assessment in real operating conditions) Gornyy jurnal = Journal of Mining Institute. 2020. Vol. 242, No. 2. pp. 228-233. DOI: 10.31897/pmi.2020.2.228
  7. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Ocenka nadejnosti funkcionirovaniya ekskavatorno_avtomobilnih kompleksov v karere (Assessment of operational reliability of quarry excavator-dump truck complexes). Gornyy jurnal = Journal of Mining Institute. 2020. Vol. 241. pp. 10-21. DOI: 10.31897/pmi.2020.1.10
  8. Tokarenko A., Timofeyev I., Kilin S., Valery W., Valle R., Duffy K. Increasing production at polyus gold Blagodatnoye with holistic optimization from mine-to-plant // Procemin 2017: 13th International Mineral Processing Conference. – Chile, 2017. – pp. 1–9.
  9. Valery W., Duffy K., Faveere R., Hayashida R., Jankovic A., Tabosa E., Yelkin I. Improving profitability, sustainability and the overall operating efficiency from mine to process in Russian operations // IMPC 2018 – 29th International Mineral Processing Congress. – Russia, 2018. – pp. 1346–1354.
  10. Kuznecov V. A. Prognozirovanie gransostava vzorvannoi massi na osnove strukturno_deformacionnogo zonirovaniya vzrivaemih poligonov (Prediction of the granulated composition of the exploded mass on the basis of structural and deformation zoning of exploding polygons). Vzryvnoe delo = Explosion Technology. 2001. Vol. 93. P. 47–55.
  11. Vinogradov Yu. I. Principi rascheta parametrov burovzrivnih rabot na osnove invariantov processa drobleniya (Principles for calculating the parameters of drilling and blasting operations based on the invariants of the crushing process). Vzryvnoe delo = Explosion Technology. 2011. No. 105-62. pp. 68–82.
  12. Ugolnikov V. K., Simonov P. S., Ugolnikov N. V. Prognozirovanie gra_nulometricheskogo sostava vzorvannoi gornoi massi (Prediction of the granulometric composition of the exploded rock mass). Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2007. No. S7. pp. 63–70.
  13. Rakishev B. R., Orynbay A. A., Auezova A. M., Kuttybaev A. E. Granulometricheskii sostav vzorvannih porod pri razlichnih usloviyah vzrivaniya (Grain size composition of broken rocks under different conditions of blasting). Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2019. No. 8. pp. 83–94. DOI: 10.25018/0236-1493-2019-08-0-83-94
  14. Reple A., Chieregati A. C., Valery W., Prati F. Bulk ore sorting cut-off estimation methodology: Phu Kham Mine case study // Minerals Engineering. 2020. Vol. 149. pp. 1–4.
  15. Valery W., Duffy K., Holtham P., Reple A., Walker P., Rosario P. Techno-economic evaluation of bulk ore sorting for copper ore at the panaust phu kham operation // IMPC 2016 – 28th International Mineral Processing Congress. – Canada, 2016. pp. 1–11.
  16. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter // Journal of Mining Institute. 2022. Vol. 254. pp. 173-179. DOI: 10.31897/PMI.2022.35
  17. Gaich A., Pötsch M. 3GSM Webinar 3D models for 3D fragmentation analysis from drone imagery // Conference: 3GSM Webinar. 2021. DOI: 10.13140/RG.2.2.12406.32323
  18. Alenichev I. A., Rakhmanov R. A. Issledovanie empiricheskih zakonomernostei sbrosa gornoi massi vzrivom na svobodnuyu poverhnost ustupa karera. (Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench). Gornyy jurnal = Journal of Mining Institute. 2021. Vol. 249. pp. 334-341. DOI: 10.31897/PMI.2021.3.2
79-98
UDC 622.235
N.N. Kazakov, Leading researcher, Dr.,
A.V. Shlyapin, Deputy director, Ph. D,
I.N. Lapikov, Senior researcher, Ph. D,
L.I. Molodchinina, lead engineer
(Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences – IPKON RAS)

Selection of size classes for measuring and calculating granulometric composition in the upper zone of the quarry block

Keywords:blockiness category of the mountain massif, granularity, blockiness classes, technological fragmentation, technological parameters

The article outlines the main provisions of the choice of size classes when determining the granulation in the upper zone of unregulated crushing in a quarry block, based on the classification of rock massifs by blockiness developed in ICEMR RAS. Technological routes of the recaptured rock mass are taken into account. The concepts of small, medium and large crushing established at the mining enterprise and the accepted sizes of oversized are taken into account

Bibliographic list:
  1. Kazakov N.N., Viktorov S.D., Shlyapin A.V., Lapikov I.N. Droblenie gornyh porod vzryvom v kar'erah. – M.: Rossijskaya akademiya nauk, 2020. – P.517.
  2. Adushkin V.V. Model'nye issledovaniya razrusheniya gornyh porod vzryvom. «Fizicheskie problemy vzryvnogo razrusheniya massivov gornyh porol». – M.: IPKON RAN, 1999. – P.18-29.
  3. Kutuzov B.N. Proektirovanie vzryvnyh rabot v promyshlennosti. – M.: Nedra, 1983. – 359 p.
  4. Viktorov S.D., Kazakov N.N., Shlyapin A.V., Dobrynin I.A. Opredelenie gransostava po fotoplanogrammam s ispol'zovaniem komp'yuternoj programmy. Vzryvnoe delo: Sb. nauchnyh trudov Gornogo informacionno-analiticheskogo byulletenya, OV № 8. – M.: Mir gornoj knigi, 2007. – P. 169-173
  5. Kazakov N.N., Shlyapin A.V. Opredelenie fakticheskogo gransostava razdroblennoj vzryvom gornoj massy. Inzhenernaya fizika, №5. - M.: OOO Izd-vo «Nauchtekhlitizdat», 2018. – P.117-123.
  6. Viktorov S.D., Kazakov N.N., Lapikov I.N., Shlyapin A.V. Vliyanie vzryva skvazhinnogo zaryada na gransostav v verhnej zone nereguliruemogo drobleniya. Nauchnyj zhurnal «Ustojchivoe razvitie gornyh territorij», t.8, №2. – Vladikavkaz, Severo-Kavkazskij gorno- metallurgicheskij institut, 2016. – P.161-170.
99-110
UDC 622.272:235
A.O. Brukhavetskaya - graduate student
(National University of Science and Technology «MISIS»)

Analysis of the influence of drilling and blasting parameters on the quality of rock crushing

Keywords:open-pit mining, drilling and blasting parameters, granulometric composition, rock mass, crushing, fragmentation, Swebrec function, PortaMetrics, minerals, emulsion explosive

The paper describes current trends in the study of improving the quality of crushing of blasted rock mass depending on the regulation of parameters of drilling and blasting operations. The importance of studying this problem is that the main parameter of the quality of the results of drilling and blasting operations is the assessment of the granulometric composition of the blasted rock mass. Therefore, it is necessary to understand what indicators, to a greater extent affect the fragmentation. This will allow to control the quality of the explosion by adjusting of drilling and blasting parameters. As a result of work the comparative analysis of the granulometric compositions by the results of drilling and blasting operations in open pit 1 and open pit 2 was made. The work focused on such indicators as: diameter of blasting holes, bench height, water inflow, seasonality and their influence on rock mass fragmentation. Analysis of the measurement results showed that the combination of blasting holes diameters has a greater influence on the granulometric composition in unwatered conditions. Seasonal watering also affects So in pit 1 with unwatered massif, seasonal water inflow reduces the quality of fragmentation, and in pit 2 with watered massif, improvement of quality of the granulometric composition is registered.

Bibliographic list:
  1. Vokhmin S. A., Kurchin G. S., Shevnina E. V., Kirsanov A. K., Kostylev S. S. Granulometric composition predicting models after explosion in open-pit mining. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. News of the Higher Institutions. Mining Journal. 2020; 1: pp. 14–24.
  2. Ignatenko I. M., DunaevV. A., Tyupin V. N. Improving procedure of pre-project assessment of hard rock blastability in open pit mines ‹Gornyi zhurnal››, 2019, № 1, pp. 46–50.
  3. Efremov E. I. Vestnik KDPU, 2006, issue 2(37), part 2, pp. 75–77.
  4. Komashchenko V.I., Vorobiev E.D., Volkov D.A. Potential of improvement of quality, reliability and environmental safety of technology explosive work on open pits. Izvestija Tul'skogo gosudarstvennogo universi-teta. Nauki o Zemle. 2018. Vyp. 1. pp 166-179.
  5. Rakishev B.R., Orynbay A.A., Auezova A.M., Kuttybaev A.E. Grain size composition of broken rocks under different conditions of blasting. Mining Informational and Analytical Bulletin, 2019;(8):83-94
  6. Victor Abioye Akinbinu, Gafar O. Oniyide, Musa Adebayo Idris Assessment of rock fragmentation and strength properties using Rosin-Rammlers and Extended Swebrec Distribution functions parameters Int. J. Min. & Geo-Eng. (IJMGE), 56-1 (2022). pp 53-60
  7. Alfredo L. Coello-Velázquez, Víctor Quijano Arteaga, Juan M. Menéndez-Aguado, Francisco M. Pole, Luis Llorente Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit Metals 2019, 9, 13 p. www.mdpi.com/journal/metals
  8. Ouchterlony F. The Swebrec function: Linking fragmentation by blasting and crushing. Mining Technology (Institution of Mining and Metallurgy A). 2005. Vol. 114. Р. 29–44.
111-128
UDC 622.235
Zairov Sh.Sh. ‒ Doctor of Technical Sciences, Professor of the Department of Mining,
Nomdorov R.U. ‒ Doctoral student of the Department of Mining
(Navoi State University of Mining and Technology)
Islomov A.N. – Deputy Head of the blasting section of the Muruntau mine of the Central Mine Administration
(JSC "Navoi Mining and Metallurgical Combine")

Experience of drilling and blasting operations in the circuit zone of the Kokpatas field quarry

Keywords:blasting, quarry edge zone, shielding gap, increasing the stability of the massif, blasting order, backsloping parameters, weakening surfaces

Despite numerous studies, the problem of ensuring the stability of the sides in their limit position due to the complexity and wide variety of mining and hydrogeological conditions of deposits for medium and deep pits has not been fully resolved. In this work, under industrial conditions, a method was developed for the formation of stable slopes of the sides of a quarry, which made it possible to obtain stable slopes of 10-meter ledges with slope angles of 650, preventing the need for additional spacing of the sides, while at the same time increasing the safety of work on the underlying horizons. The developed effective parameters of contour blasting ensured the creation of the widest possible screening gap with a given limitation of the power of the zone of violations of interblock connections in the slope part of the massif.

Bibliographic list:
  1. Sanakulov K.S., Rudnev S.V. Complex of X-ray radiometric enrichment of sulfide ores of the Kokpatas deposit // Mining Bulletin of Uzbekistan. ‒ Navoi, 2010. ‒ pp. 3-6.
  2. Zairov Sh.Sh., Urinov Sh.R. Methodology for investigating the effect of explosion of borehole charges of explosives in the contour zone of the quarry. – Navoi, 2020. – 50 p.
  3. Patent for the invention of the Republic of Uzbekistan No. IAP 06972 dated 13.05.2022. Method of forming stable slopes of the sides of the quarry // Norov Yu.D., Nasirov U.F., Zairov Sh.Sh., Umarov F.Ya., Urinov Sh.R., Tukhtashev A.B., Nutfulloev G.S., Mahmudov D.R., Sharipov L.O., Nomdorov R.U. / Registered in the State Register of Inventions of the Republic of Uzbekistan on 13.05.2022. Published in the Bill of Invention No. 12 dated 30.12.2021.
  4. Graur M.I. Control of the process of destruction of rocks during contour blasting in order to obtain stable slopes of ledges in quarries / Diss. ... candidate of Technical Sciences. – Moscow: Moscow State University, 1981. – 153 p.
129-149

Section 4. Use of combustion processes and explosion actions in industry
UDC 004.94
A. R. Mukhutdinov, Professor, Doctor of technical Sciences,
R.Sh. Garifullin, Associate Professor, Candidate of Technical Sciences,
M.E. Efimov, assistant
(Federal state budgetary educational institution of higher professional education «Kazan national research technological University» - FGBOU VO «KNITU»)

Neural network modeling of the process of accumulating charges of perforators in wells

Keywords:pyrotechnic composition, combustion products, de-mineralization, oil reservoir, clay rock, core, bottom-hole zone

This article, using the NeuroShell software development environment, presents a developed and proven technique for creating a neural network model of the process of accumulating charges of perforators based on the knowledge base to ensure maximum penetration capacity. A comparative study of the results of computer mathematical modeling and field experiment is presented. The possibility of neural network modeling of the process of accumulating charges of perforators during drilling and blasting operations in wells has been studied and shown. A computational experiment was carried out, as a result of which the values of the input characteristics for the cumulative charge were determined by a neural network model.

Bibliographic list:
  1. Orlenko L.P., Baum F.A., Stanyukevich K.P. Fizika vzryva (Physics of explosion). Moscow : FIZMALIT, 2002. 656 p.
  2. Pokrovsky G.I. Vzryv (Explosion). Moscow: Nedra, 1980. 190 p.
  3. Popov V.V. Prostrelochno-vzryvnye raboty v skvazhinah (Drilling and blasting in wells). Novocherkask: YURSTU, 2006. 212 p.
  4. Khotin V.G., Tomasheevich I.I., Ngunen M.T. et al. Kumulyaciya i ee ispol'zovanie vo vzryvnoj tekhnike (Cumulation and its use in explosive technology). Moscow: D.I. Mendeleev Russian Technical Technical University, 2007. 87 p.
  5. Borovkov A.I., Burdakov S.F., Klyavin O.I. Komp'yuternyj inzhiniring (Computer Engineering). Saint-Petersburg: Publishing House of the Polytechnic University, 2012. 93 p.
  6. Mukhutdinov A.R., Vakhidova Z.R., Efimov M.G. Nejrosetevoe modelirovanie processa detonacii smesevogo vzryvchatogo veshchestva na osnove geksida s inertnymi napolnitelyami (Neural network modeling of the detonation process of a mixed explosive based on hexide with inert fillers). Avtomatizaciya i informatizaciya TEK = Automation and informatization of the Fuel and Energy Complex. Moscow: I.M. Gubkin Russian State University of Oil and Gas, 2022. No. 6 (587). pp. 41-47.
  7. Mukhutdinov A.R., Efimov M.G., Vakhidova Z.R. Modelirovanie processa kumulyacii zaryadov perforatorov pri prostrelochno-vzryvnyh rabotah v skvazhinah (Modeling of the process of accumulating charges of perforators during drilling and blasting operations in wells). Avtomatizaciya i informatizaciya TEK = Automation and informatization of the Fuel and Energy Complex. Moscow: I.M. Gubkin Russian State University of Oil and Gas, 2022. No. 4 (585). pp. 20-24.
150-159
UDC 662.2-391.4
R.A. Kryev, associate Professor, Candidate of technical Sciences,
A.M. Korobkov, Professor, Doctor of technical Sciences,
A.S. Kurazhov, Associate Professor, Candidate of Technical Sciences,
G.I. Garifullina, assistant,
V.O. Dryakhlov, associate Professor, Candidate of technical Sciences,
E.S. Petrov, associate Professor, Candidate of chemical Sciences
(Federal state budgetary educational institution of higher professional education «Kazan national research technological University» - FGBOU VO «KNITU»)

Investigation of the effect of pyrotechnic compositions gorenje products on clay rock cores

Keywords:pyrotechnic composition, combustion products, de-mineralization, oil reservoir, clay rock, core, bottom-hole zone

Studies have been carried out to study the effect of pyrotechnic compositions gorenje products on clay rock cores. As a result of the research, it was found that the compositions, including ammonium nitrate, potassium nitrate, polytrifluoroethylene, polyvinyl chloride as components, have a significant de-clinizing effect, which is expressed by a significant decrease in mass, within 14-17%, of experimental samples of clay rock cores. At the same time, the studied formulations showed 3.5 times greater efficiency compared to the known formulation having the composition: ammonium nitrate - 35%, polyvinyl chloride - 50%, fluoro rubber of the SKF-32 brand, fluoroplast of the F-32L B brand – 5%. The results obtained open up the possibility of creating an efficient and high-performance device for de-clining layers.

Bibliographic list:
  1. Kryev R.A., Korobkov A.M., Garifullina G.I. i dr. Teoreticheskaya ocenka vozmozhnosti primeneniya pirotekhnicheskih sostavov dlya razglinizacii neftyanyh plastov (Theoretical assessment of the possibility of using pyrotechnic compositions for the decontamination of oil reservoirs). Vzryvnoe delo = Explosive business. 2022. No. 143-91. pp. 86-95.
  2. Petrov A.S., Mokeev A.A., Garifullin R.Sh. i dr. Sgoraemye kislotogeneriruyushchie kompozicii dlya povysheniya nefteotdachi plastov (Combustible acid-generating compositions for enhanced oil recovery of reservoirs). Vzryvnoe delo = Explosive business. 2018. No. 121-78. pp. 124-134.
  3. Garifullin R.Sh., Mokeev A.A., Salnikov A.S. Naturnye ispytaniya ustrojstva na osnove energonasyshchennogo kislotogeneriruyushchego materiala (Field tests of a device based on an energy-saturated acid-generating material). Vzryvnoe delo = Explosive business. 2019. No.125-82. pp. 53-64.
  4. Kosarev A.A., Mokeev A.A., Gilmutdinov D.K. i dr. Produkty goreniya tverdotoplivnyh zaryadov: ocenka effektivnosti dejstviya na karbonatnye porody (Gorenje products of solid fuel charges: evaluation of the effectiveness of action on carbonate rocks). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University. 2015. Vol.18. No.17. pp. 77-79.
  5. Salnikov A.S., Garifullin R.Sh., Bazotov V.Ya. i dr. Termoplastichnoe tverdoe toplivo na osnove poroshkoobraznogo elastomera dlya teplovoj obrabotki neftyanyh skvazhin (Thermoplastic solid fuel based on powdered elastomer for heat treatment of oil wells). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University. 2016. Vol. 19. No. 19. p. 81-83.
  6. Garifullin R.Sh., Bazotov V.Ya., Salnikov A.S. i dr. Primenenie termoplastichnogo sgoraemogo materiala v tekhnologii razryva neftyanogo plasta (Application of thermoplastic combustible material in oil reservoir fracturing technology). Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan technological University. 2015. Vol. 18. No. 21. pp. 72-73.
  7. Patent RF No. 2534142 C1, C09K 8/72, 2013.
160-168
UDC 622.235.534: 622.235.66
Flyagin A.S. - junior research assistant Laboratories of Rock destruction,
Menshikov P.V. - research assistant Laboratories of rock destruction,
Taranjin S.S. - junior research assistant Laboratories of rock destruction
(Federal State Budgetary Institution of Science Institute of Mining, Ural Branch of the Russian Academy of Sciences)

Experience of using a linear shaped charge to initiate the initiation of cracks in tested pipes during full-scale pneumatic tests

Keywords:gas trunkline pipeline, pipeline, pipes, pneumatic testing, gas trunkline testing, crack resistance, cracking, blasting, concentrated explosion, linear shaped charge, shaped jet, explosive charge mass

The use of a linear cumulative charge is necessary for the formation of crack initiation in the tested pipes of gas trunkline pipeline and their further opening by the method of concentrated explosion. The initiation of cracks is achieved by enhancing the action of the explosion by concentrating the energy of the cumulative jet and creating a cutting direction to simulate the conditions for the development of defects in trunkline pipelines and test them for crack resistance in order to implement the project of the Bovanenkovo-Ukhta gas trunkline pipeline system. The assortment of tested pipes and mechanical properties of steel are given. The method and technology of full-scale field pneumatic tests of pilot batches of pipes of gas trunklines at the test site of the Kopeysk pipe insulation plant, organized by Gazprom transgaz Yekaterinburg, are described. As a result of calculating the parameters and mass of the external linear cumulative explosive charge when breaking the walls of the metal test tubes to initiate the initiation of cracks in them, their optimal values are established and a scheme of the installation of a linear cumulative charge and the installation of an blasting circuit is shown. With all the full-scale field pneumatic tests of pilot batches of pipes, starting from 2008, a cumulative charge with a mass of 3.6 kg ensured the initiation of cracks in the tested pipes and their opening.

Bibliographic list:
  1. Menshikov P.V., Sinitsyn V.A., Shemenev V.G. et al. [Full-scale polygon pneumatic tests of pilot batches of pipes intended for the Bovanenkovo-Ukhta gas trunkline system], Naturnyye poligonnyye pnevmaticheskiye ispytaniya opytnykh partiy trub, prednaznachennykh dlya sistemy gazoprovodov Bovanenkovo-Ukhta. Tekhnologiya i bezopasnost' vzryvnykh rabot: materialy nauchno-tekhnicheskikh seminarov 22-23 apr. 2010. Yekaterinburg, IME UrB RAS, 2011. pp. 252-256. [In Russ].
  2. Menshikov P.V., Khrushchev G.N., Sinitsyn V.A., et al. Rezul'taty ispytaniy opytnykh partiy trub dlya sistemy gazoprovodov Bovanenkovo [Test results of pilot batches of pipes for the Bovanenkovo - Ukhta gas trunkline system] Tekhnologicheskoye oborudovaniye dlya gornoy i neftegazovoy promyshlennosti: sb. dokl. VIII Mezhdunarod. nauchno-tekhn. konf. " Chteniya pamyati V. R. Kubacheka", posvyashchennoy 80-letiyu so dnya rozhdeniya Skobeleva L. S., 2010, pp. 247-252. [In Russ].
  3. «Proyekt vzryvnykh rabot» proyekta organizatsii rabot «Provedeniye naturnykh poligonnykh pnevmaticheskikh ispytaniy opytnykh partiy trub, prednaznachennykh dlya realizatsii proyekta sistemy gazoprovodov Bovanenkovo-Ukhta (diametrom 1420 mm, klass prochnosti K65 (X80), na rabocheye davleniye 11,8 MPa)» ["Blasting project" of the work organization project "Carrying out full-scale polygon pneumatic tests of pilot batches of pipes intended for the implementation of the project of the Bovanenkovo-Ukhta gas trunkline system (with a diameter of 1420 mm, strength class K65 (X80), for a working pressure of 11.8 MPa)"], IME UrB RAS, Yekaterinburg, 2007, 13 p. [In Russ].
  4. Vasyukov V. I., Dildin Yu. M., Ladov S. V., Fedorov S. V. Opredeleniye energii kumulyativnoy strui razlichnymi sposobami [Determination of cumulative jet energy in various ways], Aktual'nyye problemy razrabotki sredstv porazheniya i boyepripasov : sbornik nauchnykh statey, posvyashch. 80-letiyu kaf. "Vysokotochnyye letatel'nyye apparaty", MGTU im. N. E. Baumana, Moscow, 2018. (Trudy / MGTU im. N. E. Baumana; № 616), pp. 105-118 [In Russ].
  5. Wang Z., Jiang J. W., Wang S. Y., et al. Jet Formation and Penetration Study of Double-Layer Shaped Charge [J]. Journal of Energetic Materials, 2018, 36 (2), pp. 152-168.
  6. Vorotilin M.S. The concept of creating a shaped charge with record penetration characteristics. Izvestiya TulGU. Tekhnicheskiye nauki. 2011, Tekhnicheskiye nauki, Vyp. 2, pp. 96-101 [In Russ].
  7. Rukovodstvo po proyektirovaniyu i proizvodstvu vzryvnykh rabot pri rekonstruktsii promyshlennykh predpriyatiy i grazhdanskikh sooruzheniy (RTM 36.9-88) [Guidelines for the design and production of blasting operations during the reconstruction of industrial enterprises and civil structures]. Moscow, Ministry of Assembly and Special Construction Works of the USSR, 1988, p. 34 [In Russ].
  8. Duan B., Zhou Y., Zheng S., Bao M., Wang L., Dong J., Blasting demolition of steel structure using linear cumulative cutting technology. Advances in Mechanical Engineering, Vol. 9, No. 11, 2017, pp. 1-11.
  9. Efremov E.I., Vovk A.A. Spravochnik po vzryvnym rabotam [Handbook of blasting operations], Kiev, Naukova Dumka Publ, 1983, P. 328. [In Russ].
  10. Smolyakov B.V., Ioffe B.V. Patent No. 2247935 RU [In Russ].
  11. Fedorov S.V. On the implementation of the principle of implosion in shaped charges with hemispherical linings of degressive thickness, Vestnik MGTU im. N. E. Baumana. Ser. Yestestvennyye nauki. 2017, No. 3, pp. 71-92. [In Russ].
  12. Svirsky O. V., Vlasova M. A. On the penetration capacity of shaped charges with conical and hemispherical linings. Fizika goreniya i vzryva. 2019, T. 55, No. 6. pp. 115-119. [In Russ].
  13. Lim, S., Lusk B ., Worsey P. N. Mechanisms of Linear Shaped Charge Cutting - a New Explanation. // Proceeding of Thirty-First Annual Conference on Explosives and Blasting Technique / Orlando, 2005, PP. 169-178.
  14. Cheng X., Huang G., Liu C., et al. Design of a novel linear shaped charge and factors influencing its penetration performance. Appl Sci, 8 (10), 2018, p. 1863.
  15. Naeem K., Hussain, A., Abbas, S. A review of shaped charge variables for its optimum performance. Eng. Tech. Appl. Sci. Res. 2019, 9, pp. 4917-4924.
  16. Federal'nyye normy i pravila v oblasti promyshlennoy bezopasnosti. Pravila bezopasnosti pri proizvodstve, khranenii i primenenii vzryvchatykh materialov promyshlennogo naznacheniya: utv. prikazom ot 03.12.2020, № 494 [Federal norms and rules in the field of industrial safety. Safety rules for the production, storage and use of industrial explosives: approved. by order of 03.12.2020 No. 494]. Moscow, 2020, 258 p. [In Russ].
  17. Dopolneniye k «Proyektu vzryvnykh rabot» proyekta organizatsii rabot «Provedeniye naturnykh poligonnykh pnevmaticheskikh ispytaniy trub diametrom 1420 mm dlinoy 5 m s tolshchinoy stenki 27,7 mm klassa prochnosti K65 proizvodstva PAO «Severstal'» [Addendum to the "Blasting Project" of the work organization project "Conducting full-scale pneumatic testing of pipes with a diameter of 1420 mm and a length of 5 m with a wall thickness of 27.7 mm, strength class K65, manufactured by PJSC" Severstal"], IME UrB RAS, Yekaterinburg, 2021,13 p. [In Russ].
  18. Mayants Yu. A., Karpov S. V., Alihashkin A. S., Ovcharov S. V. Designation of preliminary test sites and protective zones during testing of main pipelines, Vesti gazovoy nauki: Upravleniye tekhnicheskim sostoyaniyem i tselostnost'yu gazoprovodov, Moscow. Gazprom VNIIGAZ, 2014, No. 1 (17), pp. 88-92. [In Russ].
  19. Vadulina N. V., Achivakova L. R., Salimov A. O., Abdrakhmanova K. N., Abdullin R. S. Ensuring safety during pneumatic testing of the pipeline. Elektronnyy nauchnyy zhurnal. Neftegazovoye delo. 2017. No. 4. pp. 109-124. [In Russ].
  20. Miller D., Jallais S., Pham‐Huy M. New Criteria for Safety Distances During Pneumatic Pressure Testing of Vessels and Pipes. Process Safety, Wiley Online Library, 2019. P.17.
169-188

Section 5. Ecology and safety during blasting operations
UDC 622:235
S.A. Kozyrev, Chief Researcher, Doctor of Science (Engineering),
E.A. Usachev, Researcher,
A.V. Sokolov, Researcher
(Mining Institute FITs KSC RAS)

Seismic monitoring and prediction of the consequences of large-scale anthropogenic impacts on rock massifs in open-pit conditions

Keywords:quarry, explosives, borehole charges, mass explosion, seismic action of blasts, stability of benches, computer program

On the basis of the results of experimental observations of the seismic effect of blasts in the instrumental part of the massif at the Zhelezny mine of Kovdorsky GOK and numerical simulation the engineering methodology for rapid assessment of the seismic blast effects on the outline massif during blasting in the open-pit, which allows to estimate the width of fracturing and shattering zones in the rear of the massif, the zones of induced fracturing and stability of the benches above during dynamic effects of a mass explosion.

Bibliographic list:
  1. Mosinec V. N. Drobyashchee i sejsmicheskoe dejstvie vzryva v gornyh porodah. – M.: «Nedra», 1976. – 271 s.
  2. Fokin V.A., Tarasov G.E., Togunov M.B., Danilkin A.A., SHitov YU.A. Sovershenstvovanie tekhnologii burovzryvnyh rabot na predel'nom konture kar'erov. - Apatity: Izd-vo Kol'skogo nauchnogo centra RAN. 2008. - 224 s.
  3. Metodicheskie ukazaniya po obespecheniyu ustojchivosti otkosov i sejsmicheskoj bezopasnosti zdanij i sooruzhenij pri vedenii vzryvnyh rabot na kar'erah. L.,1977 - 17 s. (M-vo ugol'noj prom-sti SSSR. Vsesoyuz. nauch.-issled. in-t gorn. geomekh. i markshejd. dela).
  4. Kozyrev S.A., Alenichev I.A., Usachev E.A., Sokolov A.V. Sejsmicheskoe dejstvie massovyh vzryvov na borta kar'era rudnika "ZHeleznyj"- Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN. 2017. № 14. - S. 288-291.
  5. Kozyrev S.A., Kamyanskij V.N. Ocenka vliyaniya sejsmovzryvnyh nagruzok v blizhnej zone vzryva. - Gornyj informacionno-analiticheskij byulleten' (nauchno-tekhnicheskij zhurnal). 2017. № S23. - S. 316-324.
  6. SHujfer M.I., Azarkovich A.E. Raschet razmerov zony treshchinoobrazovaniya pri vzryve skvazhinnyh zaryadov v skal'nom massive. // Vzryvnoe delo. Vypusk № 82/39. – M.: Nedra, 1984. – S.191-209.
  7. Azarkovich A.E., SHujfer M.I., Tihomirov A.P. Vzryvnye raboty vblizi ohranyaemyh ob"ektov. M., Nedra, 1984. - 213 s.
  8. Lyahovickij F.M. O sootnoshenii uprugih i prochnostnyh svojstv gornyh porod. - V kn.: Geofizicheskie issledovaniya, Vyp. №1. M., Izd-vo MGU, 1964. - S. 294-305
  9. Ignatenko I.M., YAnickij E.B., Dunaev V.A., Kabelko S.G. Treshchinovatost' porodnogo massiva v kar'ere rudnika "ZHeleznyj" AO Kovdorskij GOK. //Gornyj zhurnal. №10, 2019 g. - S.11-15.
189-210

Section 6. Information
To the 90th Anniversary of the birth of the Russian Academy of Sciences Academician – Adushkin Vitaly Vasilievich211-212

 << Back
User login
Name:

Password:
Lost password?Register
Password retrival
User name or e-mail:


Enter code:
 
New user registration

User name:

Password:

Repeat password:

Enter code:
Organization name:

INN/KPP:

Juridical address:

Post address:

Contact phone number:

Contact person:

E-mail:
Full name:

Contact phone number:

Post address:

E-mail:
 
Access to electronic version

Texts of the articles are available to registered users who have paid for access to the selected journal issue.