"Explosion technology"— scientific and technical journal

Journal was founded in 1922 by a group of engineers. In Russia and the CIS "Explosion technology" is the only one peer-reviewed specialized periodical in the field of blasting.

sue 144/101 (2024) Theory and practice of blasting work99.pdf10.18698/0372-7009-2023-9

Brief view
 Article title Pages  
Title and imprint 

Section 1. Studies of rock destruction by explosion
UDC 622.235
Konstantinov I.A., mining engineer
(LLC “Company Vostsibugol”)
Talgamer B.L., Doctor of Technical Sciences, Professor, Head of the Department of Mineral Deposit Development
(Irkutsk National Research Technical University (IRNTU)
Starkov A.E., section chief
(Savkin Mining LLC)

On the question of expanding the conceptual apparatus of the theory of rocks explosion

Keywords:theory of explosive destruction of rocks, classification of methods for regulating crushing, negative results of explosive crushing, reasons for negative results of explosions, methods for improving the quality of crushing, degree of explosive crushing, methods for regulating crushing

The types of negative results of explosive preparation of rocks for excavation are analyzed (with the reasons for their occurrence and methods of elimination), set forth in the theory of rock explosion and in the theory of open-pit mining (OPM), as a result of which the list of both types of negative results of rock blasting and and the causes and ways to eliminate them. Methods for regulating the degree of crushing of rocks by explosion, set out in the theory of rock explosion and in the theory of open-pit mining, have been analyzed and compared with each other, as a result of which an updated classification of methods for regulating the degree of crushing of rocks by explosion has been proposed. Such concepts of explosive crushing of rocks as “the degree of crushing of rocks by explosion”, “regulating the degree of crushing of rocks by explosion”, “method of regulating the degree of crushing of rocks by explosion” have been adjusted.

Bibliographic list:
  1. Belin V. A., Kutuzov B. N., Ganopol'skiy M. I., Overchenko M. N. Tekhnologiya i bezopasnost' vzryvnykh rabot / V. A. Belin, B. N. Kutuzov, M. I. Ganopol'skiy, M. N. Overchenko; pod red. prof. V. A. Belina. — M. : Izd-vo «Gornoye delo» OOO «Kimmeriyskiy tsentr», 2016. — 424 s. : tabl., il. — (Biblioteka gornogo inzhenera. T. 10 «Vzryvnoye delo». Kn. 2). ISBN 978-5-905450-80-8.
  2. Konstantinov I.A., Tal'gamer B.L. Povysheniye effektivnosti vzryvnogo drobleniya osadochnykh porod, okhvachennykh ostrovnoy merzlotoy. V sbornike: Perspektivy razvitiya gorno-metallurgicheskoy otrasli. Materialy XXIII Vserossiyskoy nauchno-prakticheskoy konferentsii “Igoshinskiye chteniya”. Irkutsk, 2023. S. 37-42.
  3. Konstantinov I.A., Tal'gamer B.L. Narusheniye struktury zaryada VV v skvazhinakh pri razrabotke mestorozhdeniy v usloviyakh kriolitozony. // Vzryvnoye delo. 2024. №142/99. S. 20-35.
  4. Konstantinov I.A., Tal'gamer B.L., Starkov A.Ye. Otsenka effektivnosti vzryvnykh rabot na osadochnykh mestorozhdeniyakh s ostrovnoy merzlotoy i zabolochennost'yu // Vzryvnoye delo. 2022. №137/94. S. 80-91.
  5. Sukhanov A.F., Kutuzov B.N. Razrusheniye gornykh porod vzryvom. Uchebnik dlya vuzov. – 2-ye izd., pererab. i dop. – M.: Nedra, 1983. – 344s.
  6. Vinokurov A.P. Issledovaniye protsessov smerzayemosti gornykh porod v usloviyakh mestorozhdeniy kriolitozony // Gornyy informatsionno-analiticheskiy byulleten' nomer 5 - Yakutsk: Institut gornogo dela Severa im. N.V. Cherskogo SO RAN, 2007. - S. 111-116. UDK: 622-1:551.34(002).
  7. Panishev S.V., Yermakov M.A., Kaymonov M.V. Issledovaniye vliyaniya temperaturnogo rezhima mnogoletnemorzlykh porod Kangalasskogo mestorozhdeniya na proizvoditel'nost' draglayna // Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal) nomer 7 - Yakutsk: Uchrezhdeniye Rossiyskoy Akademii nauk Institut gornogo dela Severa N.V. Cherskogo Sibirskogo otdeleniya RAN, 2010. - S. 146-150. UDK: 622.876:622.12(571.56). ISSN: 0236-1493.
  8. Kaymonov M.V., Khokholov YU.A., Kurilko A.S. Vliyaniye teplofizicheskikh i tekhnologicheskikh faktorov na smerzaniye otbitoy porodnoy massy // Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal) nomer S4 - Yakutsk: Uchrezhdeniye Rossiyskoy Akademii nauk Institut gornogo dela Severa N.V. Cherskogo Sibirskogo otdeleniya RAN, 2010. - S. 166-175. UDK: 622.45:536.244. ISSN: 0236-1493.
  9. Kurilko A.S., Kaymonov M.V. Eksperimental'nyye issledovaniya prochnosti smorzshikhsya sypuchikh gornykh porod // Gornyy informatsionno-analiticheskiy byulleten' nomer 12 - Yakutsk: Institut gornogo dela Severa SO RAN, 2004. - S. 69-70. UDK: 624.131.4.
  10. Vedomstvennyye stroitel'nyye normy. Normy proyektirovaniya i proizvodstva burovzryvnykh rabot pri sooruzhenii zemlyanogo polotna. VSN 178-91. M., 2001.
  11. Rzhevskiy V.V. Otkrytyye gornyye raboty. Chast' I. Proizvodstvennyye protsessy: Uchebnik dlya vuzov. – 4-ye izd., pererab. i dop. – M.: Nedra, 1985. – 509s.
5-25

Section 2. State and improvement of explosives, devices and blasting agents
UDC 622.235
Sosnin V.A., head of the group of the prescription and technological department
(JSC "State Research Institute "Kristall")
Antishin D.V., Associate Professor, Candidate of Chemical Sciences
(SibGU named after M.F. Reshetnev)
Kostylev S.S. , Candidate of Technical Sciences, General Director
(NT Sayany LLC)
Rakhmanov R.A., Candidate of Technical Sciences, Researcher
(Institute for Problems of Integrated Development of Mineral Resources of the Russian Academy of Sciences)

ANC technology is a new type of sensitization of industrial explosives

Keywords:industrial explosives, ANC technology, sensitization, explosion, ammonium nitrate

The article describes a new approach to the sensitization of industrial explosives, to increase their energy characteristics and improve their use in the mining industry. In particular, the results of their tests obtained during field tests during the All-Russian conference "Industrial Explosive Technologies" held in November 2024 are presented.

Bibliographic list:
  1. Mining Encyclopedia, Volume 3, Moscow: Soviet Encyclopedia 1986, 575 p.
  2. Mamakhatova R. T. Mining industry // Mineral resources of Russia. Economics and management. - 2017. – No. 4. – pp. 60-69.
  3. The most popular gold mining sites for 2023. [electronic resource]. Access mode https://золотомаш.RF/info/articles/dobycha-zolota/samye-vostrebovannye-mesta-dobychi-zolota-na-2023-god/
  4. Kuprin R. V., Selin I. Yu., Kovalenko I. L. Development, synthesis and production of emulsifiers of reverse emulsions of "RH" brands // Mining industry. 2020. – No. 4. – pp. 81-82.
  5. Patent No. 2410639 C1 of the Russian Federation, a method for charging deep dry wells with an emulsion explosive, sensitized by the gas generation method / Shevkun E.B., Leshchinsky A.V., Sergeitsov D.V..
  6. Patent No. 2792930 C2 of the Russian Federation, A method for manufacturing an explosive based on ammonium nitrate / Kostylev S.S.
26-35
UDC 622.235.212:662.242
Kutuev V.A., Researcher at the rock destruction laboratory
(Institute of Mining of the Ural branch of the Russian Academy of Sciences - IM UB RAS)

On the standard deviations of the measured values for the main detonation characteristics of emulsion explosives

Keywords:properties of explosives, detonation Velocity, density, emulsion explosives, Fortis, Nitronite, Poremite-1A, deviations of detonation characteristics of emulsion explosives

Based on the analysis of the database of experimental measurements of the main detonation characteristics of emulsion explosives Fortis, Nitronite and Poremite-1A, obtained under industrial conditions at mining enterprises of the Ural region, standard deviations from the average values of the measured density and detonation velocity of explosives, coefficients of variation, as well as deviations of their average values from the normative ones are established. The research was carried out for a comprehensive methodology for adapting the parameters of drilling and blasting operations to changing mining conditions during the development of deep-lying complex-structural deposits of solid minerals in the dynamics of mining development, taking into account their technological relationship.

Bibliographic list:
  1. Gorinov S. А. Initiation and detonation of emulsion explosives, Yoshkar-Ola, IPF String LLC, 2020, 214 p.
  2. Pokrovskij G. I. Explosion. – 4th ed., reprint. and additional, Moscow, Nedra, 1980. 190 p.
  3. Zyryanov I. V., Bondarenko I. F., Zharikov S. N. Determination of the parameters of drilling and blasting operations at kimberlite quarries of the cryolithozone : a textbook, Yakutsk, Publishing house of the NEFU, 2019, 96 p.
  4. Belin V. A., Bolotova Yu. N., Gorbonosov M. G. Studies of detonation characteristics of emulsion explosives used in iron ore quarries. Gornaja promyshlennost'. 2022, no. 1, pp. 52-56. DOI: 10.30686/1609-9192-2022-1-52-56
  5. Alenichev I. A., Rakhmanov R. A., Shubin I. L. Assessment of the effect of a borehole charge explosion in the near field in order to optimize the parameters of drilling and blasting operations in the contour zone of the quarry. Gornyj informacionno-analiticheskij bjulleten'. 2020, № 4, pp. 85.95. DOI: 10.25018/0236-1493-2020-4-0-85-95
  6. Rakhmanov R. A., Alenichev I. A., Lushnikov V.N. Gentle blasting technologies, experience and prospects of implementation at Polyus enterprises. Gornyj zhurnal. 2021, № 1, pp. 86-92. DOI: 10.17580/gzh.2021.01.15
  7. Sovmen V. K., Kutuzov B. N., Maryasov A. L., Equist B. V., Tokarenko A.V. Seismic safety during blasting operations, Moscow, Mountain Book, 2002, 228 p.
  8. Segarra P., Sanchidrián J.A., Castedo R., López L.M., Del Castillo I. Performance of some coupling methods for blast vibration monitoring. Journal of Applied Geophysics. 2015, no. 112, pp. 129-135. DOI: 10.1016/j.jappgeo.2014.11.012
  9. Kumar R., Choudhury D., Bhargava K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering. 2016, no. 8(3), pp. 341-349. DOI: 10.1016/j.jrmge.2015.10.009
  10. Gui Y. L., Zhao Z. Y., Jayasinghe L. B., Zhou H. Y., Goh A. T. C., Tao M. Blast wave induced spatial variation of ground vibration considering field geological conditions. International Journal of Rock Mechanics and Mining Sciences. 2018, no. 101, pp. 63-68. DOI: 10.1016/j.ijrmms.2017.11.016
  11. Tyupin V. N. Explosive and geomechanical processes in fractured stressed mountain ranges, Belgorod, PH “Belgorod” SRI “Belgorod State Institute”, 2017, 192 p.
  12. Bondarenko I. F., Zharikov S. N., Zyryanov I. V., Shemenev V. G. Drilling and blasting operations at the kimberlite quarries of Yakutia, Ekaterinburg, Institute of Mining Ural Branch of the Russian Academy of Sciences, 2017, 172 p.
  13. Zharikov S. N., Shemenev V. G. On the impact of blasting on the stability of quarry sides. Izvestija vysshih uchebnyh zavedenij. Gornyj zhurnal. 2013, no. 2, pp. 80-83.
  14. Shubin I. L., Rakhmanov R. A., Alenichev I. A., Nabiullin M. F. Approaches to controlling the parameters of the explosion of downhole explosive charges based on measurements of seismic waves. Vzryvnoe delo. 2021, no. 132-89, pp. 40-58.
  15. Lyashenko V. I., Golik V. I., Komashchenko V. I., Kislyi P. A., Rakhmanov R. A. Improving the seismic safety of underground mining of rock deposits based on the use of new means of initiating explosive charge explosions. Vzryvnoe delo. 2019, no. 122-79. pp. 154-179.
  16. Zharikov S. N., Shemenev V. G. On the impact of blasting on the stress state of the mountain range and geodynamic phenomena. Izvestija vysshih uchebnyh zavedenij. Gornyj zhurnal. 2013, no. 3, pp. 90-97.
  17. Mosinets V. N. Crushing and seismic effect of explosion in rocks, Moscow, Nedra, 1976, 271 p.
  18. Sinitsyn V. A., Menshikov P. V., Kutuev V. A. Determination of the main characteristics of explosives and the impact of an explosion on the environment based on the use of measuring equipment "DATATRAPII". Ustojchivoe razvitie gornyh territorij. 2018, Vol. 10, No. 3, pp. 383-391. DOI: 10.21177/1998-4502-2018-10-3-383-391.
  19. Zharikov S. N., Kutuev V. A. On the patterns of detonation of explosives. Vzryvnoe delo. 2022, No. 135-92, pp. 115-131.
  20. Zharikov S. N. Development of resource-saving drilling and blasting technology. Izvestija vuzov. Gornyj zhurnal. 2019, No. 1, pp. 21-32.
  21. Kutuev V. A. Study of detonation characteristics of the industrial emulsion explosive poremit-1A, using the DATATRAPII™ data recorder. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2016, No. S21, pp. 101-109.
  22. Menshikov P. V., Zharikov S. N., Kutuev V. A. Determination of the width of the chemical reaction zone of the industrial emulsion explosive poremit 1A based on the uncertainty principle in quantum mechanics. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2021, No. 5-2. pp. 121-134. DOI: 10.25018/0236_1493_2021_52_0_121.
  23. Kutuev V. A., Flyagin A. S., Zharikov S. N. Investigation of the detonation characteristics of HDPE NPGMS with different initial components of the emulsion when initiating charges with different intermediate detonators. Izvestija Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2021, No. 3, pp. 175-187. DOI: 10.46689/2218-5194-2021-3-1-169-181.
  24. Emulsion industrial explosive "Nitronite". Technical conditions TC 7276-003-58995878-2004. Moscow, CJSC "Institute of Explosion", 2004, 18 p.
  25. Emulsion industrial explosive "Poremit-1A". Technical conditions TC 84-08628424-671-96. Dzerzhinsk, FSUE GosNII Kristall, 1996, 19 p.
  26. Emulsion industrial explosive "Fortis". Technical conditions TC 7276-001-23308410-2006 (26.01.2015). Moscow, Orica, 2015, 21 p.
36-51

Section 3. Technology of blasting in the mining of solid minerals
UDC 622.235.5
Peters K.I., Deputy Director for Prospective Development of Blasting Drilling and Blasting Technologies
(VZRYV GROUP LLC)
Rada A.O., Director of the Institute of Digitalization, Candidate of Economical Sciences,
Konkov N.Yu., Head of the Development Department of the Institute of Digitalization
(Kemerovo State University)

Approaches to automated data processing in analyzing blast well drilling telemetry for developing specialised software

Keywords:algorithm, block model, blastholes, drilling telemetry, energy consumption, data averaging

In mining and geological information systems (MGIS) and specialized software products when implementing algorithms for constructing block models based on telemetry data obtained during drilling blastholes and their subsequent interpretation in mining and geological information systems and specialized software products, there are some features of the use and applicability of such data, due to the inevitable and constant increase in requirements, from the point of view of the quality of the information provided for further engineering use, analysis and decision-making in the field of blasting operations. The article considers approaches to interval averaging of drilling energy intensity data and describes two approaches to the implementation of deterministic and stochastic block models, namely, when averaging with fixed and non-fixed intervals by depth, respectively.
In the drilling design module of the web application "System for monitoring construction work at sites that have passed state examination", developed within the framework of the project "Geoinformation system of digital regional management" of the comprehensive scientific and technical program of the full innovation cycle "Clean coal - Green Kuzbass", the data obtained from the drilling rig during drilling are loaded into the application being developed to calculate the energy intensity of drilling and build a block model. The obtained data allow you to build a block model of energy intensity, and 3D Web rendering tools make it possible to display the block model in various representations (deterministic, stochastic), as well as to obtain a visualization of the cross-section of the rock mass along a given plane. Loading and storing drilling data allows you to work with data from drilling machines of various manufacturers and brands, since the web application has a tool and the ability to analyze data and perform calibration.
The article was written with financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the agreement on the provision of grants from the federal budget in the form of subsidies dated September 30, 2022 No. 075-15-2022-1195 and within the framework of the comprehensive scientific and technical program of the full innovation cycle "Development and implementation of a complex of technologies in the fields of exploration and extraction of solid minerals, industrial safety, bioremediation, creation of new products of deep processing from coal raw materials with a consistent reduction of the environmental burden on the environment and risks to the life of the population" (approved by Decree of the Government of the Russian Federation dated May 11, 2022 No. 1144-r).

Bibliographic list:
  1. Hou W, Yang Q, Chen X, Xiao F, Chen Y (2021) Uncertainty analysis and visualization of geological subsurface and its application in metro station construction. Front Earth Sci 15(3):692–704. https:// doi.org/10.1007/s11707-021-0897-6.
  2. Olierook H, Scalzo R, Kohn D, Chandra R, Müller R (2021) Bayesian geological and geophysical data fusion for the construction and uncertainty quantifcation of 3D geological models. Geosci Front 12(1):479–493.
  3. Randle C.H., Bond C.E., Lark R.M., Monaghan A.A., 2018. Can uncertainty in geological cross-section interpretations be quantified and predicted? Geosphere 14, 1087–1100. https://doi.org/10.1130/GES01510.1.
  4. Kessler H, Mathers S, Sobisch H-G (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Computers & geosciences 35: 1311-132.
  5. Hillier M.J., Schetselaar E.M., de Kemp E.A., Perron G., 2014. Three-Dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math. Geosci. 46, 931–953. https://doi.org/10.1007/ s11004-014-9540-3
  6. Jessell M, Aillères L, De Kemp E, Lindsay M, Wellmann F, Hillier M, Laurent G, Carmichael T, Martin R, 2014. Next Generation Three-Dimensional Geologic Modeling and Inversion, SEG Conference on Keystone - Building Exploration Capability for the 21st Century, Keystone, CO, pp. 261- 272
  7. Calcagno P., Chil` es J.P., Courrioux G., Guillen A., 2008. Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys. Earth Planet. In. 171, 147–157. https://doi.org/10.1016/j.pepi.2008.06.013.
  8. Gonçalves ´ I.G., Kumaira S., Guadagnin F., 2017. A machine learning approach to the potential-field method for implicit modeling of geological structures. Comput. Geosci. 103, 173–182. https://doi.org/10.1016/ j.cageo.2017.03.015.
  9. Lajaunie C., Courrioux G., Manuel L., 1997. Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Math. Geol. 29, 571–584. https://doi.org/10.1007/bf02775087.
  10. Iskenova G., Ram B., Maldonado J., Kumaran P., Meyer J., Chabernaud T., Casado J. H., Sharma S.K., Rahman M.R.A., Moreno J.C., Ibrahim R.B., 2016. A novel workflow for modelling complex compartmentalised structures leads to enhanced field development strategy. https://doi.org/ 10.4043/26643-ms.
  11. Souche L., Lepage F., Iskenova G., 2013. Volume based modeling – automated construction of complex structural models. In: 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers, pp. 5033–5037. https://doi.org/10.3997/2214-4609.20130037
  12. Brandes C., Tanner D.C., 2014. Fault-related folding: a review of kinematic models and their application. Earth Sci. Rev. https://doi.org/ 10.1016/j.earscirev.2014.06.008.
  13. Caumon G., 2010. Towards stochastic time-varying geological modeling. Math. Geosci. 42, 555–569. https://doi.org/10.1007/s11004-010-9280-y.
  14. Lemon A.M., Jones N.L., 2003. Building solid models from boreholes and user-defined cross-sections. Comput. Geosci. 29, 547–555. https://doi.org/10.1016/S0098-3004 (03)00051-7.
  15. Muzik J., Vondrackova T., Sitanyiova D., Plachý J., Nývlt V., 2015. Creation of 3D geological models using interpolation methods for numerical modelling. Procedia Earth Planet. Sci. 15, 25–30. https://doi.org/10.1016/ j.proeps.2015.08.007.
  16. Zhu L F, Zhang C J, Li M J, Pan X, Sun J Z (2012) Building 3D solid models of sedimentary stratigraphic systems from borehole data: An automatic method and case studies. Engineering Geology 127: 1-13.
  17. Shen Y G, Li A B, Huang J C, Lue G N, Li K L (2022) Three-dimensional modeling of loose layers based on stratum development law. Open Geosciences 14: 1480-1500.
  18. Neven A., Christiansen A.V. & Renard P. Automatic stochastic 3D clay fraction model from tTEM survey and borehole data. Sci Rep 12, 17112 (2022). https://doi.org/10.1038/s41598-022-21555-z.
  19. Isheyskiy V. A., Martinyskin E. A., Vasilyev A. S., Smirnov S. A. Selection of data on drilling-and-blasting in creation of databases of machine learning algorithms. MIAB. Mining Inf. Anal. Bull. 2022;(4):116-133. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_116.
  20. Marinin M. A., Rakhmanov R. A., Alenichev I. A., Afanasyev P. I., Sushkova V. I. Effect of grain size distribution of blasted rock on WK-35 shovel performance. MIAB. Mining Inf. Anal. Bull. 2023;(6):111-125. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_111.
52-72
UDC 622.235
Starkov A.E., section chief
(Savkin Mining LLC)
Talgamer B.L., Doctor of Technical Sciences, Professor, Head of the Department of Mineral Deposit Development
(Irkutsk National Research Technical University (IRNTU)
Konstantinov I.A., mining engineer
(LLC “Company Vostsibugol”)

Justification of drilling and blasting parameters in the development of overburden rocks based on the results of the work of excavation and loading equipment

Keywords:drilling and blasting operations, well pattern, oversized output, specific consumption of explosives, excavator productivity, bench height

Based on the results of experimental blasting operations in quarries with changes in the grid and depth of wells, deceleration intervals and specific consumption of explosives, using the portable device “Portal metrics”, studies of the granulometric composition of the overburden rock prepared for excavation were carried out. The quality of the prepared overburden was later assessed based on the results of the work of excavation equipment, including a straight shovel type excavator. Based on the data obtained, the parameters of the blasting network and the optimal bench height were proposed to ensure improved quality of the fractional composition of the overburden rock, a reduction in the accident rate of production processes, an increase in the service life of excavation and loading equipment, and an increase in the productivity of excavators. Based on the results of the experiments, an analysis of the performance of the excavator was carried out, and the dependence of the performance of excavation and loading equipment on the parameters of blasting operations was established.

Bibliographic list:
  1. Komashchenko V.I., Antsiferov S.V., Sammal A.S. The influence of structural features and physico-mechanical properties of massifs on the quality of explosive preparation of ore and the effectiveness of environmental protection // Izvestiya Tula State University. Earth Sciences. 2016. Issue 3. pp. 190-203.
  2. Golovin K.A., Kovalev R.A., Kopylov A.B. Forecasting the location of the destruction zones of the massif during blasting operations.//News of TulSU. Earth Sciences, 2017 issue 4. pp. 293-302
  3. Belin V.A., Gorbons M.G., Mangush S.K., Ekvist B.V. New technologies for conducting Blasting operations// Mining information and analytical bulletin (scientific and technical journal). 2015. pp. 87-102.
  4. Pytalev I.A., Domozhirov D.V., Shvabenland E.E., Prokhorov A.A., Pronin V.V. A method for improving the quality of rock preparation for excavation using emulsion explosives in quarries with high ledges // Mining industry. 2021; pp. 62-67 DOL:10.30686/1609-9192-202-6-62-675)
  5. Kuznetsov V. A. Generalized predictive estimate of the cost of drilling blastholes and boreholes // GIAB. 2007. No. 12. P. 126-136.
  6. Rubtsov S. K., Shlykov A. G., Prokhorenko G. A., Shemetov P. A., Bibik I. P., Vakhrushev Yu. P., Fil V. I. Improving technological processes of drilling operations at the quarries of the Novyi Mining and Metallurgical Plant // GIAB. 2001. P. 89-90. No. 11.
  7. Bovin K. A., Gilev A. V., Shigin A. O., Kritsky D. Yu. Industrial studies of the efficiency of drilling equipment operation in the conditions of the Olimpiadinsky Mining and Processing Plant of JSC Polyus // Bulletin of KuzSTU. 2017. No. 3 (121). P. 87-94.
  8. Lel Yu. I., Zakharov A. V. Efficiency of operation of new models of drilling rigs in quarries of the Urals // GIAB. 2011. No. 6. P. 199-206.
  9. Bovin K. A., Gilev A. V., Shigin A. O., Plotnikov I. S. Analysis of operation of blasthole drilling equipment in quarries of the Krasnoyarsk Territory and the Republic of Khakassia // Bulletin of the Siberian Branch of the Russian Academy of Natural Sciences. Geology, prospecting and exploration of ore deposits. 2017. No. 3 (60). P. 99-106.
  10. Vinogradov Yu.I., On the issue of designing drilling and blasting operations at deposits with a complex geological structure using the Kuranakh ore field as an example / Khokhlov S.V., Zigangirov R.R., Rakhmanov R.A.// Blasting Business. 2022. No. 137-94. Pp. 45-65.
  11. Estimation of Rock Mass Strength in Open-Pit Mining / Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N. Ya.// Journal of Mining Institute. 2019. Vol. 239. Pp. 502-509. DOI 10.31897/PMI.2019.5.502.
  12. Bovin K. A., Gilev A. V., Shigin A. O., Plotnikov I. S. Analysis of the operation of blasthole drilling equipment in quarries of the Krasnoyarsk Territory and the Republic of Khakassia
  13. Zigangirov R. R., Algorithm for determining the relationship between drilling parameters and the physical and mechanical properties of rocks / Yu. I. Vinogradov, S. V. Khokhlov, R. A. Rakhmanov // Blasting business. - 2021. No. 133-90. P. 122-136.
  14. Korshunov V. A. Strength estimation of fractured rock using compression-a specimen with spherical indenters / Korshunov V. A., Solomoychenko D. A., Bazhukov A. A.// Geomechanics and Geodynamics of Rock Masses : SET OF 2 VOLUMES, Saint Petersburg, May 22–26, 2018. Vol. 1–2. – Saint Petersburg: Taylor & Francis Group, London, UK, 2018. P. 299–306.
  15. Protosenya A. G. Determination of the scale effect of strength properties of a fractured rock mass / Protosenya A. G., Verbilo P. E.// Bulletin of Tula State University. Earth Sciences. 2016. No. 1. P. 167–176.
73-84
UDC 622.272:235
Rozhkov A.A., candidate of technical sciences, senior research worker of the laboratory of underground geotechnology,
Baranovsky K.V., candidate of technical sciences, senior research worker of the laboratory of underground geotechnology
(Institute of Mining of the Ural branch of the Russian Academy of Sciences – IM UB RAS)

Assessment of damage from bad quality ore breaking at the contact with underlying rocks during underground mining of gentle bedding deposits

Keywords:gentle dipping deposit, open stoping, flat bottom, ore blasting, losses, ore fines, extractive value

In this work, an assessment was made of the damage that occurs during bad quality breaking of ore at the contact with the underlying rocks during open stoping extraction with a flat bottom design in the conditions of mining gently dipping deposits of disseminated copper-nickel ores of limited thickness. The main sources of such damage have been identified – the loss of unbroken ore in the lower part of the open stope with the formation of an uneven surface of the soil of the working space and the loss of broken ore in the form of smalll fractions with a high content of metals (enriched ore fines) due to the impossibility of high-quality cleaning of uneven soil. To determine the loss of unbroken ore, a technique is proposed that differs by taking into account the angle of the formed soil as a result of bad quality breaking at the contact with the underlying rocks. To determine the losses of broken ore, a technique has been proposed that allows one to take into account the granulometric composition and the degree of enrichment of the ore mass compacted as a result of the operation of the loading and hauling machine. The dependences of the loss rates of unbroken and broken ore on mining-geological and mining-technical factors – the thickness of ore body, the width of the open stopes and the height of the layer of lost ore – have been established. The predicted amount of damage per one open stope was determined depending on its geometric parameters. Taking into account the annual production capacity of the mine of 1.2 million tons and the share of the use of open stoping mining during reserves, a forecast was made about the magnitude of potential damage from bad quality ore breaking at the contact with the underlying rocks

Bibliographic list:
  1. Jakovlev V.L. Osnovnye jetapy i rezul'taty issledovanij po razrabotke metodologicheskih osnov strategii razvitija gornotehnicheskih sistem pri osvoenii glubokozalegajushhih mestorozhdenij tverdyh poleznyh iskopaemyh (The main stages and results of research on the development of methodological foundations for the strategy for the development of mining systems for the development of deep deposits of solid minerals) // Gornaya promyshlennost' = Mining industry. 2022. No. S1. P. 34-45. DOI: 10.30686/1609-9192-2022-1S-34-45.
  2. Turtygina N.A., Ohrimenko A.V., Frolov N.A., Mel'nickaja M.E. Vlijanie sistemy razrabotki na poteri i razubozhivanie pri podzemnoj dobyche vkraplennyh rud (The influence of the development system on losses and dilution during underground mining of disseminated ores) // Nauchnyj vestnik Arktiki = Scientific Bulletin of the Arctic. 2023. No. 15. P. 5-14. DOI: 10.52978/25421220_2023_15_5-14.
  3. Vohmin S.A., Trebush Ju.P., Kurchin G.S., Majorov E.S. Metodicheskie osnovy normirovanija poter' i razubozhivanija pri otrabotke mestorozhdenij stroitel'nogo syr'ja podzemnym sposobom (Methodological basis for rationing losses and dilution when mining deposits of construction raw materials using the underground method) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2013. No. 10. P. 11-20.
  4. Antipin Ju.G., Baranovskij K.V., Rozhkov A.A., Nikitin I.V., Solomein Ju.M. Issledovanie vlijanija pokazatelej izvlechenija na jeffektivnost' podzemnoj otrabotki mestorozhdenij bednyh kompleksnyh rud (Study of the influence of recovery indicators on the efficiency of underground mining of low-grade complex ore deposits) // Gornaya promyshlennost' = Mining industry. 2022. No. S1. P. 46-52. DOI: 10.30686/1609-9192-2022-1S-46-52.
  5. Mazhitov A.M., Volkov P.V. Obrushenie rudy i vmeshhajushhih porod pri razrabotke pologih mestorozhdenij (Caving of ore and host rocks during the mining of flat deposits.). Magnitogorsk : Magnitogorskij gosudarstvennyj tehnicheskij universitet im. G.I. Nosova, 2019. – 124 p.
  6. Kurchin G.S. K voprosu o normirovanii poter' i razubozhivanija na kontaktah pri podzemnoj otrabotke mestorozhdenij (On the issue of normalizing losses and dilution at contacts during underground mining of deposits) // Markshejderskij vestnik = Mine Surveyor Bulletin. 2015. No. 4(107). P. 19-23.
  7. Savich I.N. Problemy primenenija sistem s prinuditel'nym obrusheniem pri podzemnoj razrabotke rudnyh mestorozhdenij (Problems of using systems with forced caving in underground mining of ore deposits) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2014. No. S1. P. 366-373.
  8. Sokolov I.V., Antipin Ju.G., Baranovskij K.V., Rozhkov A.A., Nikitin I.V. Puti povyshenija jeffektivnosti podzemnoj razrabotki pologih mestorozhdenij bednyh kompleksnyh rud (Ways to increase the efficiency of underground mining of flat deposits of low-grade complex ores) // Problemy nedropol'zovanija = Problems of subsoil use. 2022. No. 4(35). P. 33-43. DOI: 10.25635/2313-1586.2022.04.033.
  9. Sokolov I.V., Smirnov A.A., Antipin Ju.G., Baranovskij K.V. Sovershenstvovanie konstrukcii dnishha bloka pri vypuske rudy samohodnymi pogruzochno-dostavochnymi mashinami (Improving the design of the block bottom when releasing ore by self-propelled loading and delivery machines) // Fiziko-tehnicheskie problemy razrabotki poleznyh iskopaemyh = Journal of mining science. 2014. No. 6. P. 125-133.
  10. Popov N.I., Ivanov A.A. Snizhenie poter' otbitoj rudy pri razrabotke naklonnyh zalezhej (Reducing the loss of broken ore during the development of inclined deposits). Magadan: Knizhnoe izd-vo, 1979. 62 p.
  11. Lomonosov G.G., Shangin S.S., Jusimov B.V. Povyshenie izvlechenija melkih frakcij zolotosoderzhashhih rud pri podzemnoj razrabotke malomoshhnyh mestorozhdenij (Increasing the extraction of fine fractions of gold ores during underground development of thin deposits) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2013. No. S27. P. 12-18.
  12. Wu J. Research on sublevel open stoping recovery processes of inclined medium thick ore body on the basis of physical simulation experiments // PLoS ONE. 2020. Vol. 15(5). Р. e0232640.
  13. Kurchin G.S., Vohmin S.A., Kytmanov A.A. Vlijanie formy geologicheskogo kontakta na velichinu poter' pri otrabotke prikontaktnyh zon (The influence of the shape of the geological contact on the amount of losses during the development of near-contact zones) // Zapiski Gornogo institute = Journal of Mining Institute. 2017. T. 223. P. 37-43. DOI: 10.18454/PMI.2017.1.37.
  14. Bulatov K.V., Dik Ju.A., Kotenkov A.V., Tankov M.S., Kul'minskij A.S., Tishkov M.V., Kul'minskij A.A. Novye tehnologicheskie reshenija razrabotki kimberlitovyh mestorozh-denij Jakutii (New technological solutions for the development of kimberlite deposits in Yakutia). Ekaterinburg : Uralmehanobr : Ural'skij rabochij, 2022. – 540 p.
  15. Valiev N.G., Propp V.D., Berkovich V.H., Kolesnikov A.A., Shohov S.O. O promezhu-tochnyh rezul'tatah ispytanij novoj geotehnologii podzemnoj razrabotki polimetallicheskih rud (On the intermediate results of testing a new geotechnology for underground mining of polymetallic ores) // Innovacionnye geotehnologii pri razrabotke rudnyh i nerudnyh mestorozhdenij : – Ekaterinburg: Ural'skij gosudarstvennyj gornyj universitet, 2023. P. 6-11.
  16. Glotov V.V., Pahaluev B.G. Optimizaciya rasstoyaniya mezhdu stenkami zhelobov pri gidrozachistke vyemochnyh blokov (Optimization of the distance between the walls of the gutters in the hydraulic cleaning of excavation blocks) // Vestnik Zabajkal'skogo gosudarstvennogo universiteta = Bulletin of the Transbaikal State University. 2016. No. 4. P. 4-9.
  17. Uskov V.A., Kondrat'ev S.A., Neverov S.A. Ob jekonomicheskoj celesoobraznosti otrabotki zapadnogo flanga medistyh rud Oktjabr'skogo mestorozhdenija s porodnoj zakladkoj vtorichnyh kamer (On the economic feasibility of mining the western flank of cuprous ores of the Oktyabrskoye deposit with rock filling of secondary chambers) // Fiziko-tehnicheskie problemy razrabotki poleznyh iskopaemyh = Journal of mining science. 2017. No. 6. P. 133-139. DOI: 10.15372/FTPRPI20170613.
  18. Darbinjan T.P., Fender S.N., Marysjuk V.P., Gorpinchenko V.A. Opyt vnedrenija jeksperimental'nyh pasportov burenija i proektov vzryvnyh rabot pri otbojke kamer mezhdu ili vprisechku k zakladochnomu betonu na rudnike «Oktjabr'skij» (Experience in the implementation of experimental drilling passports and blasting projects when breaking chambers between or adjacent to backfill concrete at the Oktyabrsky mine) // Fundamental'nye i prikladnye voprosy gornyh nauk = Fundamental and applied issues of mining sciences. 2018. T. 5, No. 2. P. 41-45.
  19. Pavlov A.M., Semenov Yu.M. Primenenie vakuumnoj tekhnologii pri zachistke rudy v usloviyah kriolitozony rudnika «Irokinda» (The use of vacuum technology in ore cleaning in the permafrost zone of the Irokinda mine) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2007. No. 11. P. 24-29.
  20. Lizunkin M.V., Lizunkin V.M., Sitnikov R.V. Issledovanie gidromekhanicheskogo sposoba zachistki obogashchennoj rudnoj melochi s pochvy vyrabotannogo prostranstva (Investigation of the hydromechanical method of stripping enriched ore fines from the soil of the mined-out space) // Inzhenernaya fizika = Engineering Physics. 2020. No. 11. P. 54-60. DOI 10.25791/infizik.11.2020.1177.
  21. Pickering R. G. Long hole drilling applied to narrow reef mining // Platinum Surges Ahead : Proceedings of the International Platinum Conference. South African Institute of Mining and Metallurgy. Sun City, Rustenburg, South Africa, 2006. P. 199-207.
  22. Savich I.N., Mustafin V.I., Lifar'-Laptev A.A., Jakovlev A.M., Syrenov M.O. Vlijanie pokazatelej poter' i razubozhivanija pri primenenii kamernoj sistemy razrabotki s vyemkoj rombovidnymi kamerami (v uslovijah rud srednej ustojchivosti) (The influence of loss and dilution indicators when using a chamber mining system with extraction by diamond-shaped chambers (in conditions of medium-resistant ores)) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2020. No. S25. P. 43-57. DOI: 10.25018/0236-1493-2020-7-25-43-57.
  23. Li J., Zhan K. Intelligent mining technology for an underground metal mine based on unmanned equipment // Engineering. 2018. Vol. 4. Iss. 3. P. 381-391. DOI: 10.1016/j.eng.2018.05.013
  24. Sokolov I.V., Antipin Ju.G., Rozhkov A.A. Modernizacija sistemy razrabotki malo-moshhnogo mestorozhdenija bogatyh mednokolchedannyh rud (Modernization of the development system for a thin deposit of rich copper pyrite ores) // Ustojchivoe razvitie gornyh territorij = Sustainable development of mountain territories. 2020. T. 12, No. 3(45). P. 444-453. DOI: 10.21177/1998-4502-2020-12-3-444-453.
  25. Neverov A.A., Semenov D.P., Neverov S.A., Nikol'skij A.M., Tishkov M.V. Obosnovanie parametrov kamerno-stolbovoj vyemki s reguljarnym izvlecheniem celikov i obrusheniem porod krovli v uslovijah bol'shih glubin (Justification of the parameters of a chamber-and-pillar excavation with regular extraction of pillars and collapse of roof rocks in conditions of great depths) // Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta = Bulletin of the Kuzbass State Technical University. 2018. No. 1(125). P. 5-14. DOI: 10.26730/1999-4125-2018-1-5-13.
  26. Sokolov I.V., Rozhkov A.A., Antipin Ju.G. Metodicheskij podhod k obosnovaniju teh-nologij snizhenija ushherba ot pereizmel'chenija rudy pri podzemnoj razrabotke (Methodological approach to substantiation of technologies for reducing damage from ore grinding during underground mining) // Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle = News of the Tula State University. 2023. No. 3. P. 352-367. DOI: 10.46689/2218-5194-2023-3-1-352-367
  27. Smirnov A.A., Rozhkov A.A. Issledovanija dejstvija vzryva veera skvazhinnyh zarjadov (Investigations of explosion action of blast hole ring charges) // Vzryivnoe delo = Explosion technology. 2018. No 119/76. pp. 118-128.
  28. Sokolov I.V., Rozhkov A.A., Baranovskij K.V. Parametrizacija tehnologii snizhenija ushherba ot pereizmel'chenija rudy pri podzemnoj razrabotke mestorozhdenij (Parameterization of technology for reducing damage from ore grinding during underground mining) // Gornaya promyshlennost' = Mining industry. 2023. No. 5. P. 124-128. DOI: 10.30686/1609-9192-2023-5-124-128
  29. Lomonosov G.G., Turtygina N.A. Yavlenie segregacii rudnoj massy i ego vliyanie na formirovanie kachestva produkcii gornorudnogo proizvodstva (The phenomenon of ore mass segregation and its influence on the formation of the quality of mining products) // Gornyy Informatsionno-Analiticheskiy Byulleten = Mining Information-Analytical Bulletin. 2014. No. 6. P. 37-40.
85-103

Section 4. Use of combustion andexplosion actions in industry
UDC 662.612.1
Asadov H.G., Doctor of Engineering. Sciences, Professor,
Alieva Kh.S., Ph.D. tech. Sciences,
Bayramov G.Z., doctoral student
(National Aerospace Agency)

New criterion of self-ignition of fire-hazardous materials

Keywords:self-ignition, ambient temperature, flammable materials, self-ignition criteria, heat transfer equation

The article is devoted to the development of new criteria for self-ignition of flammable materials. The question of the formation of an additional criterion for the possibility of self-ignition using a dimensionless indicator proposed by Frank-Kamenetsky is analyzed. Two additional dimensional parameters are proposed, depending on the ambient temperature. It is shown that the first indicator considered as a criterion of self-ignition has a maximum from the second indicator when the latter is equal to the universal gas constant. At the same time, the maximum value of the first indicator does not depend on the ambient temperature and is considered as an invariant. A comparison of the proposed criterion with the Frank-Kamenetsky criterion of a similar type showed the coincidence of their maxima at the specified point, however, in the future the proposed criterion turns out to be less strict, which will make it possible to use preventive fire protection measures more effectively.

Bibliographic list:
  1. Kolka R., Scott Bridgham, Ping Chien-Lu, Soils of Peatlands: histosols and Gelisols, in: M. Vepraskas, C.Craft (Eds.), Wetland Soils: Genesis, Hidrology, Landscapes, and Classification. Second Edieds., CRC Press, 2016, pp. 277-304. DOI:10.1201/b18996-13.
  2. Rein G., Smouldering Fires and Natural Fuels, in: M. Belcher Claire (Ed.) Fire Phenomena in the Earth Systemed., John Wiley & Sons, Ltd., New York, 2013, pp. 15–34. http://dx.doi.org/10.1002/9781118529539.ch2.
  3. Turetsky M.R., Benscoter B., Page S., Rein G., Van der Werf G.R., Watts A., Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci. 8 (2015) 11–14. http://dx.doi.org/10.1038/ngeo2325.
  4. Rein G., Smoldering Combustion SFPE Handbook of Fire Protection Engineering, Springer, New York, New York, NY, 2016, pp. 581–603. http://dx.doi.org/ 10.1007/978-1-4939-2565-0_19.
  5. Drysdale D., An Introduction to Fire Dynamics, 3rd ed., John Wiley & Sons, Ltd, Chichester, UK, 2011. http://dx.doi.org/10.1002/9781119975465.
  6. Page S.E., Siegert F., Rieley J.O., Boehm H.-D.V., Jaya A., Limin S., The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature 420 (2002) 61–66. http://dx.doi.org/10.1038/nature01141.1.
  7. Rein G., Peat fire in the National Park of Las Tablas de Daimiel, Spain., (n.d.). http://edinburghfireresearch.blogspot.com/2009/12/field-trip-to-ongoing-smouldering-peat.html.
  8. Frandsen W.H., The influence of moisture and mineral soil on the combustion limits of smouldering forest duff, Can. J. For. Res. 16 (1987) 1540–1544. http:// dx.doi.org/10.1139/x87-236.
  9. Frandsen W.H., Ignition probability of organic soils, Can. J. For. Res. 27 (1997) 1471–1477. http://dx.doi.org/10.1139/x97-106.
  10. Restuccia F., Ptak N., Rein G., Self-heating behavior and ignition of shale rock, Combustion and Flame 176 (2017) 213–219. http://dx.doi.org/ 10.1016/j. combustflame.2016.09.025.
  11. Huang X., Rein G., Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires, Sci. Total Environ. (2015). http://dx.doi.org/10.1016/ j.scitotenv.2016.02.201.
  12. Restuccia Francesco, Huang Xinyan, Rein Guillermo. Self-ignition of natural fuels: Can widfires of carbon-rich soil start by self-heating / IAFSS 12th Symposium 2017, Fire safety journal (2017). №91, p. 828-834. DOI:10.1016/j.firesaf.2017.03.052.
104-114
UDC 662.612.12
Javadov N.G., Doctor of Engineering. Sci., Professor, General Director,
Asadov H.G., Doctor of Engineering. sc., professor, head. Department of Research Institute,
Azizova A.E., Ph.D. tech. Sciences, doctoral student
(National Aerospace Agency)

On the possibility of preventing pontaneous ignition ofombustible materials

Keywords:self-ignition, critical temperature, combustible materials, optimization, heat generation

The possibility of preventing spontaneous ignition of combustible materials is analyzed. A calculation method has been developed for calculating the critical ambient temperature at which spontaneous ignition of materials can occur. It is shown that for specific stored materials, by determining the values of the parameters included in the proposed formula, it is possible to calculate the coefficient of gain in the risk of spontaneous ignition of the material in question.

Bibliographic list:
  1. Drysdale D., An Introduction to Fire Dynamics, 3rd ed., John Wiley & Sons, Ltd,Chichester, UK, 2011. http://dx.doi.org/10.1002/9781119975465.
  2. Restuccia F., Ptak N., Rein G., Self-heating behavior and ignition of shale rock, Combustion and Flame 176 (2017) 213–219. http://dx.doi.org/ 10.1016/j.combustflame.2016.09.025.
  3. Gray B., Spontaneous combustion and self-heating 3rd ed., in: P.J. DiNenno (Ed.)SFPE Handbook of Fire Protection Engineeringed. (2002), 2002, pp. 211–228.
  4. Nelson M.I., Marchant T.R., Wake G.C., Balakrishnan E., Chen X.D., Self-heating incompost piles due to biological effects, Chem. Eng. Sci. 62 (2007) 4612–4619. http://dx.doi.org/10.1016/j.ces.2007.05.018.
  5. Hogland W., Marques M., Physical, biological and chemical processes duringstorage and spontaneous combustion of waste fuel, Resour., Conserv. Recycl. 40(2003) 53–69. http://dx.doi.org/10.1016/S0921-3449(03)00025-9.
  6. Restuccia F., Huang X., Rein G. Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating. Fire safety journal. 91. Pp. 828-834.
  7. Frandsen W.H., The influence of moisture and mineral soil on the combustionlimits of smouldering forest duff, Can. J. For. Res. 16 (1987) 1540–1544. http://dx.doi.org/10.1139/x87-236.
  8. Frandsen W.H., Ignition probability of organic soils, Can. J. For. Res. 27 (1997)1471–1477. http://dx.doi.org/10.1139/x97-106.
  9. Huang X., Rein G., Chen H., Computational smoldering combustion: predicting theroles of moisture and inert contents in peat wildfires, Proc. Combust. Inst. 35(2015) 2673–2681. http://dx.doi.org/10.1016/ j.proci.2014.05.048.
  10. Bowes P.C., Self-Heating: evaluating and Controlling the Hazards. HMSO. London, 1984.
  11. Elyegolts L.E. Differentiated equations and calculus of variations. M. Nauka, 2000, 424 p.
115-127

Section 5. Ecology and safety during blasting operations
UDC 622.235.535.2
Kutuev V.A., Researcher at the rock destruction laboratory,
(Institute of Mining of the Ural branch of the Russian Academy of Sciences - IM UB RAS)

Industrial seismic from gentle blasting at the Tominskoye field

Keywords:seismic effect of explosion, blasting, destruction of rocks, properties of rocks, critical and permissible speed of soil vibrations, permissible distance, critical and permissible mass of explosive charge

The results of a study of industrial seismics from blasting operations at the Tominsky GOK are presented. The measurements were carried out by digital seismic recorders on the daytime surface of the mining area of the quarry. Regression dependences are constructed and empirical equations and coefficients are obtained that allow predicting the level of seismic impact of an explosion. Formulas are proposed for calculating the safe masses of explosive charges and distances providing seismic fluctuations within acceptable values during the development of the deep-lying complex-structural Tominsky deposit of porphyry copper ores.

Bibliographic list:
  1. Mosinets V. N. Crushing and seismic effect of explosion in rocks, Moscow, Nedra, 1976, 271 p.
  2. Bondarenko I. F., Zharikov S. N., Zyryanov I. V., Shemenev V. G. Drilling and blasting operations at the kimberlite quarries of Yakutia, Ekaterinburg, Institute of Mining, Ural Branch of the Russian Academy of Sciences, 2017, 172 p.
  3. Zharikov S. N., Kutuev V. A. Seismic effects in different rocks and soil. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2020, № 12, pp. 44-53. DOI: 10.25018/0236-1493-2020-12-0-44-53
  4. Zharikov S. N., Bersenev G. P., Kutuev V. A., Flyagin A. S. Scientific studies of the seismic effect of an explosion on an underground high-pressure gas pipeline. Problemy nedropol'zovanija. 2019, No. 3, pp. 145-154. DOI: 10.25635/2313-1586.2019.03.145
  5. Zharikov S. N., Kutuev V. A. Construction of a nomogram for determining the parameters of DBW in the pit's contour zone. Izvestija Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2020, No. 3, pp. 161-171. DOI: 10.25635/r0915-0037-0746-z
  6. Kutuev V. A. Investigating the seismic impact made by the underground large-scale blast on the secure facilities of Kyshtym GOK when caving the floor pillar. News of the Higher Institutions. Mining Journal. 2020, Vol. 2, pp. 25-36. DOI: 10.21440/05361028-2020-2-25-36
  7. Kutuev V. A., Zharikov S. N. Influence of underground mass explosion on protected objects of the industrial site in case of collapse of the interstory whole. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2020, No. 3-1, pp. 368-382. DOI: 10.25018/0236-1493-2020-31-0-368-382
  8. Menshikov P. V., Taranjin S. S., Flyagin A. S. Research of seismic influence on buildings and structures of Satka town while exploding explosive works on the Karagayskiy career in constrained conditions. Gornyj informacionno-analiticheskij bjulleten' (nauchno-tehnicheskij zhurnal). 2020, No. 3-1, pp. 383-398. DOI: 10.25018/0236-1493-2020-31-0-383-398
  9. Zeng J., Mohammed A. S., Mirzaei F., Moosavi S. M. H., Armaghani D. J., Samui P. A parametric study of ground vibration induced by quarry blasting: an application of group method of data handling. Environmental Earth Sciences. 2022, Vol. 81 (4), art. no. 127. DOI: 10.1007/s12665-022-10239-6
  10. Armaghani D. J., Momeni E., Asteris P. Application of group method of data handling technique in assessing deformation of rock mass. Metaheuristic Comput Appl. 2020, Vol. 1 (1), pp. 1-18. DOI: 10.12989/mca.2020.1.1.001
  11. Amiri M., Hasanipanah M., Bakhshandeh A. H. Predicting ground vibration induced by rock blasting using a novel hybrid of neural network and itemset mining. Neural Computing and Applications. 2020, Vol. 32, pp. 14681-14699. DOI: 10.1007/s00521-020-04822-w
  12. Haghnejad A., Ahangari K., Moarefvand P. Numerical investigation of the impact of rock mass properties on propagation of ground vibration. Natural Hazards. 2019, Vol. 96, pp. 587-606. DOI: 10.1007/s11069-018-3559-6
  13. Jahed Armaghani D., Kumar D., Samui P., Hasanipanah M., Roy B. A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine. Engineering with Computers. 2021, Vol. 37, No. 4, pp. 3221-3235. DOI: 10.1007/s00366-020-00997-x
  14. Sadovsky M. A. Selected works: Geophysics and physics of explosion, Moscow, Nauka, 2004, 440 p.
  15. Sadovsky M. A. The simplest techniques for determining seismic hazard in explosions, Moscow, Skochinsky Institute of Mining of the USSR AS, 1946, 29 p.
  16. Kartuzov M. I., Pazdnikov N. V. and [et al.] Methodology for ensuring earthquake-safe technology of blasting operations, Sverdlovsk, Institute of Mining of the Ministry of Ferrous Metallurgy of the USSR, 1984, 12 p.
  17. Drukovany M. F. Methods of explosion control at quarries, Moscow, Nedra, 1973, 415 p.
  18. Construction in seismic areas. CR 14.13330.2018 : approved by Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation dated May 24, 2018 No. 309/pr : effective November 25, 2018, URL: https://docs.cntd.ru/document/550565571 (date of application: 02/09/2024).
  19. The method of measuring the velocity of seismic vibrations and pressure at the front of an air shock wave using the MiniMate Plus digital seismic recorder, the URAN registration and analysis device and the autonomous AIR meter recorder, Ekaterinburg, Institute of Mining Ural Branch of the Russian Academy of Sciences, No. 88-16359-118-01.00076-2011, 2011, 15 p.
  20. Guidelines for analyzing the danger of emergency explosions and determining the parameters of their mechanical action. RB G-05-039-96 : approved by Resolution No. 100 of the Gosatomnadzor of Russia on December 31, 1996 : effective from August 01, 1997, URL: http://docs.cntd.ru/document/1200061429 (date of application: 12/09/2024).
  21. Vibration and shock. Vibration of buildings. Measurement of vibration and assessment of its impact on the structure. GOST R 52892-2007 : approved and put into effect by Order of the Federal Agency for Technical Regulation and Metrology dated December 27, 2007 No. 586-st, URL: https://docs.cntd.ru/document/1200064161 (date of application: 12/09/2024).
128-144
UDC 622.271.2
Sheinkman L.E., Doctor of Technical Sciences, Professor,
Ivlieva M.S., graduate student
(Tula State University)

Threat of karst spreading in a limestone quarry

Keywords:karst, limestone quarry, blasting operations, acid rain, hydrosphere pollution

The article is devoted to the study of the occurrence and spread of karst in the zone of influence of a limestone quarry and a cement plant located nearby. Total emissions from cement production contain NO3- and SO42-, CO2 aerosols, which cause acid precipitation. Due to the vast territory of the quarry of 150 hectares, huge outcrops of limestone rock (calcium carbonate, chemical formula CaCO3) come to the daylight surface, which has a high solubility when interacting with acid precipitation. The article provides an overview of the triggering mechanisms of karst formation. It is noted that ongoing blasting operations at the limestone quarry can aggravate the incipient formation of karst voids. Due to the spread of karst in the quarry area, the groundwater level decreases, as a result of which the cavities are drained and the influx of polluted surface water increases, which further aggravates the environmental situation around, leading to pollution of the hydrosphere. This study presents methods for diagnosing karst based on the specific features of its spread. The forms of formation of typical karst sinkholes in the mining area are given. The review concludes with methods for combating karst.

Bibliographic list:
  1. Students' File Archive. The Danger of Karst Processes. [https://studfile.net/preview/3550045/, accessed 18.08.2024].
  2. Morphometric and geological features of potential karst depressions in Kanthan limestone formation, Malaysia.
  3. Xiuang He, Chengyu Liu, Xiangxiang Zhang, Changui Wu, Zhiyu Weng. Effects of pH on Disintegration Characteristics of Gypsum Karst Breccia under Scouring Action/He Xiuang, Liu Chengyu, Zhang Xiangxiang, Wu Changui, Weng Zhiyu. Minerals, - 2003.-№13(10), https://doi.org/10.3390/ min13101254.
  4. Zeng Jue, Wu Qixin, Nan Guilin, Yang Tang. Effect of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area/ Jue Zeng, Qixin Wu, Guilin Nan, Tang Yang. Agriculture Ecosystems and Environment, 2019. DOI:10.1016/j.agee.2019.106782.
  5. Junbing P.U., Yuan Dao-Xian, Hu Zhi-Yong, Yang Pingheng. High-resolution research on the NO3- changes in karst groundwater and its responses to the outside environmental variations/Junbing PU, Dao-Xian Yuan, Zhi-Yong Hu, Pingheng Yang. Huan Jing Ke Xue, -2011.-No.32(3).
  6. Lyu Xiaoxi, Tao Zhang, Gao Quanzhou, Peng Haixia. Chemical Weathering and Riverine Carbonate System Driven by Human Activities in a Subtropical Karst Basin, South China/Xiaoxi Lyu, Zhang Tao, Quanzhou Gao, Haixia Peng, 2018. Water, No.10(11). DOI:10.3390/w10111524.
  7. Guo Fang, Jiang Guanghui. Biological sulfate reduction in an epigene karst aquifer and its impact on cave environment/Fang Guo, Guanghui Jiang. Journal of Hydrology, 2021. Vo.602. https://doi.org/10.1016/ j.jhidrol.2021.126804.
  8. Garrels R.M., Christ C.L. Solutions, minerals. Chapter 4. Complex ions [http://twt.mpei.ac.ru/ochkov/trenager/garrels/ch04.htm]
  9. Popov Yu.V., Pustovit O.E. General geology. Study guide // Karst. - Rostov-on-Don, - 2015. - P.41.
  10. William H., Langer. Potential Environmental Impacts of Quarrying Stone in Karst – A literature Review/U.S.Geological Survey science for a changing world. US Geological Survey report in the public domain 01-0484, - 2001.
145-153

Section 6. Information
UDC 622.235
Vyatkin N.L., Bolotova Yu.N.

Participation Of ANO "NOIV" in solving the problems of the complex scientific and technical program "Electronic detonators of Russia" (Results of the XXV International Conference on explosives)

Keywords:conference, explosives, technology, development, blasting operations, speaker, facility

154-176

 << Back
User login
Name:

Password:
Lost password?Register
Password retrival
User name or e-mail:


Enter code:
 
New user registration

User name:

Password:

Repeat password:

Enter code:
Organization name:

INN/KPP:

Juridical address:

Post address:

Contact phone number:

Contact person:

E-mail:
Full name:

Contact phone number:

Post address:

E-mail:
 
Access to electronic version

Texts of the articles are available to registered users who have paid for access to the selected journal issue.